Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (10): 1169-1176.DOI: 10.15541/jim20200005
Special Issue: 生物材料论文精选(2020); 【虚拟专辑】生物检测与成像(2020~2021)
• RESEARCH LETTERS • Previous Articles Next Articles
CHENG Qin1,2(), YANG Yong2(
), YANG Lili2
Received:
2020-01-05
Revised:
2020-02-03
Published:
2020-10-20
Online:
2020-10-20
Contact:
YANG Yong, professor. E-mail: yangyong@mail.sic.ac.cn.About author:
CHENG Qin(1994-). female, Master candidate. E-mail: cq18817206957@163.com.
Supported by:
CLC Number:
CHENG Qin, YANG Yong, YANG Lili. Pt-Au Dendritic Nanoparticles with High Oxidase-like Activity for Detection of Ascorbic Acid[J]. Journal of Inorganic Materials, 2020, 35(10): 1169-1176.
Sample | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/(%, n=3) |
---|---|---|---|---|
Juice | 0 | 5.53 | - | 4.1 |
3.12 | 8.86 | 103.71 | 3.2 | |
6.25 | 12.01 | 103.68 | 3.4 |
Sample | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/(%, n=3) |
---|---|---|---|---|
Juice | 0 | 5.53 | - | 4.1 |
3.12 | 8.86 | 103.71 | 3.2 | |
6.25 | 12.01 | 103.68 | 3.4 |
Catalyst | Substrate | Km/(mmol·L-1) | Ref. |
---|---|---|---|
BiW9Cu3 | TMB | 0.29 | [ |
CeO2 | 0.8-3.8 | [ | |
Hg2+/Citrate-AgNPs | 0.23 | [ | |
N-CQDs | 0.515 | [ | |
Cu-Ag/rGO | 0.634 | [ | |
Cu NPs | 1.047 | [ | |
Lysozyme-PtNPs | 0.63 | [ | |
Fe3O4@C | 0.38 | [ | |
Pt-Au DNPs | 0.22 | This work |
Catalyst | Substrate | Km/(mmol·L-1) | Ref. |
---|---|---|---|
BiW9Cu3 | TMB | 0.29 | [ |
CeO2 | 0.8-3.8 | [ | |
Hg2+/Citrate-AgNPs | 0.23 | [ | |
N-CQDs | 0.515 | [ | |
Cu-Ag/rGO | 0.634 | [ | |
Cu NPs | 1.047 | [ | |
Lysozyme-PtNPs | 0.63 | [ | |
Fe3O4@C | 0.38 | [ | |
Pt-Au DNPs | 0.22 | This work |
Catalyst | Linear range/(μmol·L-1) | LOD/(μmol·L-1) | Ref. |
---|---|---|---|
FeCo NPs@PNC | 0.5-28 | 0.38 | [ |
N-CQDs | 5-40 | 1.773 | [ |
Cu-Ag/rGO | 1-30 | 3.6 | [ |
Cu NPs | 1-10 | 0.68 | [ |
LaF3:Ce,Tb | 8-10 | 2.4 | [ |
CuO/Pt | 1-600 | 0.796 | [ |
MIL-88 | 2.57-10.1 | 1.03 | [ |
Pt-Au DNPs | 1-15 | 0.078 | This work |
Catalyst | Linear range/(μmol·L-1) | LOD/(μmol·L-1) | Ref. |
---|---|---|---|
FeCo NPs@PNC | 0.5-28 | 0.38 | [ |
N-CQDs | 5-40 | 1.773 | [ |
Cu-Ag/rGO | 1-30 | 3.6 | [ |
Cu NPs | 1-10 | 0.68 | [ |
LaF3:Ce,Tb | 8-10 | 2.4 | [ |
CuO/Pt | 1-600 | 0.796 | [ |
MIL-88 | 2.57-10.1 | 1.03 | [ |
Pt-Au DNPs | 1-15 | 0.078 | This work |
[1] |
REYES A C, PLACHE D C, KOUDELKA A P , et al. Enzyme architecture: breaking down the catalytic cage that activates orotidine 5′-monophosphate decarboxylase for catalysis. Journal of the American Chemical Society, 2018,140:17580-17590.
DOI URL PMID |
[2] | LIU J, HU X, HOU S , et al. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sensors and Actuators B-Chemical, 2012,166:708-714. |
[3] |
WU T, MA Z, LI P , et al. Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe-Co bimetallic alloy encapsulated porous carbon nanocages. Talanta, 2019,202:354-361.
DOI URL PMID |
[4] |
CHEN M, WANG Z, SHU J , et al. Mimicking a natural enzyme system: cytochrome C oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome C. Inorganic Chemistry, 2017,56(16):9400-9403.
DOI URL PMID |
[5] |
HWANG E T, YTATAVAIRT R, CHUNG J , et al. New functional amorphous calcium phosphate nanocomposites by enzyme-assisted biomineralization. ACS Applied Materials & Interfaces, 2013,5(3):532-537.
DOI URL PMID |
[6] |
LIU Y, WU H, CHONG Y , et al. Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Applied Materials & Interfaces, 2015,7(35):19709-19717.
DOI URL PMID |
[7] |
LIU J B, JIANG X M, WANG L M , et al. Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Research, 2015,8(12):4024-4037.
DOI URL |
[8] |
ZHANG K, HU X, LIU J , et al. Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir, 2011,27(6):2796-2803.
DOI URL PMID |
[9] |
GAO L Z, NIE L, ZHANG J B , et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007,2(9):577-583.
DOI URL PMID |
[10] |
QIN W, SU L, YANG C , et al. Colorimetric detection of sulfite in foods by a TMB-O2-Co3O4 nanoparticles detection system. Journal of Agricultural and Food Chemistry, 2014,62(25):5827-5834.
DOI URL |
[11] | VYADA P K, SINGH V K, CHANDRA S , et al. Green synthesis of fluorescent carbon quantum dots from azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomaterials Science & Engineering, 2019,5:623-632. |
[12] |
HU Y, GAO X J, ZHU Y , et al. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chemistry of Materials, 2018,30:6431-6439.
DOI URL |
[13] |
WANG G L, XU X F, WU X M , et al. Visible-light-stimulated enzymelike activity of graphene oxide and its application for facile glucose sensing. Journal of Physical Chemistry C, 2014,118(48):28109-28117.
DOI URL |
[14] |
CHEN W, FANG X, LI H , et al. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosensors & Bioelectronics, 2017,94:169-175.
DOI URL PMID |
[15] | ARAYSCHUKIAT S, KONGTES C, BARTHEL A , et al. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions. ACS Sustainable Chemistry & Engineering, 2017,5:6392-6397. |
[16] |
HATAMIE A, RAHMATI R, REZVANI E , et al, Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection. ACS Applied Nano Materials, 2019,2:2212-2221.
DOI URL |
[17] |
ZHAO L, LIAO K, WONG L , et al. Electro-oxidation of ascorbic acid by cobalt core-shell nanoparticles on a H-terminated Si(100) and by nanostructured cobalt-coated Si nanowire electrodes. ACS Applied Materials & Interfaces , 2013,5(7):2410-2416.
DOI URL PMID |
[18] |
JANG H I, LEE H G . Stability of chitosan nanoparticles for l-ascorbic acid during heat treatment in aqueous solution. Journal of Agricultural and Food Chemistry, 2008,56(6):1936-1941.
DOI URL PMID |
[19] |
SINGH V, MONDAL P C, LAKSHMANAN J Y , et al. “Turn on” electron-transfer-based selective detection of ascorbic acid via copper complexes immobilized on glass. Analyst, 2012,137:3216-3219.
DOI URL |
[20] |
MALASHIKJINA N, PAVLOV V . DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Biosensors & Bioelectronics, 2012,33(1):241-246.
DOI URL PMID |
[21] |
GOKMEN V, KAHRAMAN N, DEMIR N , et al. Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables. Journal of Chromatography A, 2000,881(1):309-316.
DOI URL |
[22] |
DU J, SHAO Q, YIN S , et al. Colorimetric chemodosimeter based on diazonium-gold-nanoparticle complexes for sulfite ion detection in solution. Small, 2012,8:3412-3416.
DOI URL PMID |
[23] |
ZHANG X, HE S, CHEN Z , et al. CoFe2O nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. Journal of Agricultural and Food Chemistry, 2013,61(4):840-847.
DOI URL |
[24] |
WANG X, HAN Q, CAI S , et al. Excellent peroxidase mimicking property of CuO/Pt nanocomposites and their application as an ascorbic acid sensor. Analyst, 2017,142:2500-2506.
DOI URL PMID |
[25] |
HE W, HAN X, JIA H , et al. AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Scientific Reports, 2017,7:40103.
DOI URL PMID |
[26] |
ZHENG Y, ZENG J, RUDITSKIY A , et al. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chemistry of Materials, 2014,26:22-33.
DOI URL |
[27] |
MA L, WANG C, GONG M , et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications ACS Nano, 2012,6:9797-9806.
DOI URL PMID |
[28] |
XIONG Y J, CHEN J Y, WILEY B , et al. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. Journal of the American Chemical Society , 2005,127(20):7332-7333.
DOI URL PMID |
[29] |
RAM S, FECHT H J . Modulating up-energy transfer and violet- blue light emission in gold nanoparticles with surface adsorption of poly(vinyl pyrrolidone) molecules. Journal of Physical Chemistry C, 2011,115(16):7817-7828.
DOI URL |
[30] | TSUJI M, JIANG P, HIKINO S , et al. Toward to branched platinum nanoparticles by polyol reduction: a role of poly(vinylpyrrolidone) molecules. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008,317:23-31. |
[31] |
XIONG Y, WASHIO I, CHEN J , et al. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006,22(20):8563-8570.
DOI URL PMID |
[32] |
CAO Y, YANG Y, SHAN Y , et al. Large-scale template-free synthesis of ordered mesoporous platinum nanocubes and their electrocatalytic properties. Nanoscale, 2015,7(46):19461-19467.
DOI URL PMID |
[33] |
ZHANG P, SUN D, CHO A , et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal- free bioinspired cascade photocatalysis. Nature Communications, 2019,10:940.
DOI URL PMID |
[34] |
LAI W, ZHUANG J , et al. Novel colorimetric immunoassay for ultrasensitive monitoring of brevetoxin b based on enzyme- controlled chemical conversion of sulfite to sulfate. Journal of Agricultural and Food Chemistry, 2015,63(7):1982-1989.
DOI URL PMID |
CHAI D H, MA Z, YAN H , et al. Synergistic effect of sandwich polyoxometalates and copper-imidazole complexes for enhancing the peroxidase-like activity. RSC Advances, 2015,5:78771-78779.
DOI URL PMID |
[1] | DENG Min, JIANG Qi, FANG Yuan, LI Huan, QIU Jia-Xin, LU Xiao-Ying. Carbon Nanotubes/Polyaniline Chemically Modified Electrode: Preparation and Ascorbic Acid Detection [J]. Journal of Inorganic Materials, 2018, 33(1): 53-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||