无机材料学报 ›› 2025, Vol. 40 ›› Issue (4): 388-396.DOI: 10.15541/jim20240382 CSTR: 32189.14.10.15541/jim20240382

• 研究论文 • 上一篇    下一篇

ZIF-67结构调控及其对盐酸金霉素的吸附性能研究

洪培萍1(), 梁龙1, 吴炼1,2, 马颖康1, 庞浩1()   

  1. 1.广东省科学院 化工研究所, 广州 510665
    2.广西大学 广西石化资源加工及过程强化技术重点实验室, 南宁 530004
  • 收稿日期:2024-08-16 修回日期:2024-11-06 出版日期:2025-04-20 网络出版日期:2024-11-29
  • 通讯作者: 庞 浩, 研究员. E-mail: panghao@gdcri.com
  • 作者简介:洪培萍(1987-), 女, 工程师. E-mail: 104360006@qq.com
  • 基金资助:
    广东省科学院建设国内一流研究机构行动专项资金(2020GDASYL-20200102029);广西石化资源加工及过程强化技术重点实验室开放基金(2022K013)

Structure Regulation of ZIF-67 and Adsorption Properties for Chlortetracycline Hydrochloride

HONG Peiping1(), LIANG Long1, WU Lian1,2, MA Yingkang1, PANG Hao1()   

  1. 1. Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
    2. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
  • Received:2024-08-16 Revised:2024-11-06 Published:2025-04-20 Online:2024-11-29
  • Contact: PANG Hao, professor. E-mail: panghao@gdcri.com
  • About author:HONG Peiping (1987-), female, engineer. E-mail: 104360006@qq.com
  • Supported by:
    GDAS' Project of Science and Technology Development(2020GDASYL-20200102029);Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2022K013)

摘要:

抗生素排放不当会严重危害水体环境, 开发高效的吸附材料以去除环境中的抗生素, 是当前解决抗生素污染问题的重要手段之一。本研究通过调控合成过程中溶剂配比, 制得一系列不同形貌的类沸石咪唑酯骨架材料ZIF-67, 并将其用于吸附盐酸金霉素(CTC)。结果表明, 随着甲醇与水体积比逐渐降低, 所制得的ZIF-67从菱形十二面体结构转变为六方片状交叠堆积结构(ZIF-67-3), 后者更有利于CTC的吸附。在考察温度、溶液pH、浓度和杂质离子种类等对ZIF-67-3吸附CTC性能影响的基础上, 进一步研究了吸附过程动力学。结果表明, 该吸附过程遵循准二级吸附动力学模型和Langmuir模型。当ZIF-67-3用量为100 mg·L-1时, 在20 min内其对CTC(初始浓度为30 mg·L-1)的移除率可达90%以上; 在中性条件下, 吸附容量最大, 可达1206.58 mg·g-1。ZIF-67-3主要通过π-π/π-阳离子相互作用、氢/配位键等来吸附CTC, 属于化学吸附机制。六方片状交叠堆积结构的ZIF-67-3更有利于充分暴露活性吸附位点, 因而具有更优的CTC吸附性能。本研究揭示了合成过程中溶剂配比对ZIF-67形貌结构的影响规律, 阐明了ZIF-67-3对CTC的吸附过程机理, 为ZIF-67在四环素类抗生素污染治理领域的实际应用提供了理论支撑。

关键词: ZIF-67, 结构调控, 盐酸金霉素, 化学吸附, 吸附动力学

Abstract:

Improper disposal of antibiotics poses significant risks to the aquatic environment. Development of efficient adsorbents for removal of antibiotics in environment is currently an important approach to address this issue. In this study, a series of zeolitic imidazolate framework (ZIF-67) materials with different morphologies were synthesized by adjusting the solvent composition during the synthesis process to investigate their adsorption properties for chlortetracycline hydrochloride (CTC). The results indicate that as the volume ratio of methanol to water decreases, the synthesized ZIF-67 transforms from a rhombic dodecahedral structure to a stacked hexagonal platelet structure which is more favorable for the adsorption of CTC. Based on a detailed investigation of the effects of temperature, solution pH, concentration, and types of impurity ions on the adsorption performance of CTC by ZIF-67 with a stacked hexagonal platelet structure (denoted as ZIF-67-3), the kinetics of the adsorption process indicate that the adsorption process follows both pseudo-second-order kinetic model and Langmuir model. Moreover, ZIF-67-3 (at a dosage of 100 mg·L-¹) achieved a removal rate of over 90% for CTC (with an initial concentration of 30 mg·L-1) within 20 min, and the maximum CTC adsorption capacity of ZIF-67-3 could reach 1206.58 mg·g−1 under neutral conditions. Since ZIF-67-3 primarily adsorbs CTC through interactions such as π-π/π-cation interaction and hydrogen/coordination bonds, belonging to a monolayer chemical adsorption mechanism, ZIF-67-3 facilitates full exposure of active adsorption sites, thus exhibiting superior CTC adsorption performance. In summary, this study reveals the influence of solvent composition during synthesis on the morphology and structure of ZIF-67, elucidates the adsorption mechanism of ZIF-67-3 adsorbent for CTC, and provides theoretical support for the practical application of ZIF-67 in removal of antibiotic pollution.

Key words: ZIF-67, structure regulation, chlortetracycline hydrochloride, chemical adsorption, adsorption kinetics

中图分类号: