无机材料学报 ›› 2022, Vol. 37 ›› Issue (11): 1245-1258.DOI: 10.15541/jim20220114 CSTR: 32189.14.10.15541/jim20220114
所属专题: 【生物材料】肿瘤治疗(202409); 【生物材料】骨骼与齿类组织修复(202409)
• 研究快报 • 上一篇
收稿日期:
2022-03-02
修回日期:
2022-04-03
出版日期:
2022-11-20
网络出版日期:
2022-05-07
通讯作者:
王会, 副研究员. E-mail: WHIL86@shutcm.edu.cn;作者简介:
陈铖(1997-), 男, 硕士研究生. E-mail: 1930642@tongji.edu.cn
CHEN Cheng1(), DING Jingxin1, WANG Hui2(
), WANG Deping1(
)
Received:
2022-03-02
Revised:
2022-04-03
Published:
2022-11-20
Online:
2022-05-07
Contact:
WANG Hui, associate professor. E-mail: WHIL86@shutcm.edu.cn;About author:
CHEN Cheng (1997-), male, Master candidate. E-mail: 1930642@tongji.edu.cn
Supported by:
摘要:
骨肉瘤是一种常见的恶性骨肿瘤, 常通过手术切除进行治疗。但术后造成的骨缺损难以自愈, 残余肿瘤细胞还会增加复发可能性。本研究开发了一种用于修复骨缺损和协同治疗骨肉瘤的掺钕介孔硼硅酸盐生物活性玻璃陶瓷骨水泥。首先通过溶胶-凝胶法结合固态反应制备了可作为光热剂和药物载体的掺钕介孔硼硅酸盐生物活性玻璃陶瓷微球(MBGC-xNd), 然后将微球与海藻酸钠(SA)溶液混合制备了可同时进行光热治疗和化学治疗的可注射骨水泥(MBGC-xNd/SA)。结果表明掺Nd3+赋予微球可控的光热性能, 负载阿霉素(DOX)的微球显示出持续的药物释放行为。此外, 载药骨水泥的药物释放量随着温度的升高而显著增加, 说明光热疗法产生的热量可促进DOX释放。体外细胞实验结果表明, MBGC-xNd/SA具有良好的促成骨活性, 并且光热-化学联合疗法对MG-63骨肉瘤细胞起到了更显著的杀伤作用, 表现出协同效应。因此,MBGC-xNd/SA作为一种新颖的多功能骨修复材料, 在骨肉瘤的术后治疗方面具有良好的应用前景。
中图分类号:
陈铖, 丁晶鑫, 王会, 王德平. 掺钕介孔硼硅酸盐生物活性玻璃陶瓷骨水泥的制备与性能表征[J]. 无机材料学报, 2022, 37(11): 1245-1258.
CHEN Cheng, DING Jingxin, WANG Hui, WANG Deping. Nd-doped Mesoporous Borosilicate Bioactive Glass-ceramic Bone Cement[J]. Journal of Inorganic Materials, 2022, 37(11): 1245-1258.
Scheme 1 Schematic diagram of preparation and properties of MBGC-xNd microspheres and MBGC-xNd/SA bone cement The color figure can be obtained from online edition
Sample | SiO2 | B2O3 | P2O5 | CaO | NdO3/2 |
---|---|---|---|---|---|
MBGC-0Nd | 50 | 10 | 4 | 36 | 0 |
MBGC-1Nd | 50 | 10 | 4 | 35 | 1 |
MBGC-3Nd | 50 | 10 | 4 | 33 | 3 |
MBGC-5Nd | 50 | 10 | 4 | 31 | 5 |
Table 1 Composition in molar percent of MBGC-xNd microspheres
Sample | SiO2 | B2O3 | P2O5 | CaO | NdO3/2 |
---|---|---|---|---|---|
MBGC-0Nd | 50 | 10 | 4 | 36 | 0 |
MBGC-1Nd | 50 | 10 | 4 | 35 | 1 |
MBGC-3Nd | 50 | 10 | 4 | 33 | 3 |
MBGC-5Nd | 50 | 10 | 4 | 31 | 5 |
Fig. 1 Characterization of MBGC-xNd microspheres (a-e) TEM images of (a) MBN, (b) MBGC-0Nd microspheres, (c) MBGC-1Nd microspheres, (d) MBGC-3Nd microspheres, and (e) MBGC-5Nd microspheres; (f) High-resolution TEM image of MBGC-3Nd microspheres with insert showing the interplanar crystal spacing at about 0.334 nm; (g) XRD patterns of MBN and MBGC-xNd microspheres; (h) N2 adsorption-desorption isotherm and (i) pore size distribution curve of MBGC-xNd microsphere The color figures can be obtained from online edition
Sample | Specific surface area/(m2·g-1) | Pore size /nm | Pore volume /(cm3·g-1) |
---|---|---|---|
MBN | 329.261 | 12.506 | 0.4498 |
MBGC-0Nd | 42.092 | 6.024 | 0.0634 |
MBGC-1Nd | 36.065 | 4.776 | 0.0431 |
MBGC-3Nd | 34.424 | 4.496 | 0.0387 |
MBGC-5Nd | 28.818 | 3.710 | 0.0268 |
Table 2 Pore structure of MBN and MBGC-xNd microspheres
Sample | Specific surface area/(m2·g-1) | Pore size /nm | Pore volume /(cm3·g-1) |
---|---|---|---|
MBN | 329.261 | 12.506 | 0.4498 |
MBGC-0Nd | 42.092 | 6.024 | 0.0634 |
MBGC-1Nd | 36.065 | 4.776 | 0.0431 |
MBGC-3Nd | 34.424 | 4.496 | 0.0387 |
MBGC-5Nd | 28.818 | 3.710 | 0.0268 |
Fig. 3 Cumulative release curves of DOX from (A) MBGC-xNd@DOX microspheres in PBS at pH 4.7 and (B) MBGC-3Nd/SA@DOX in PBS at pH 4.7 under different ambient temperatures The color figures can be obtained from online edition
Fig. 4 Photothermal properties of MBGC-xNd microspheres (A) Heating curves of MBGC-xNd microspheres under 808 nm laser irradiation (3.2 W/cm2); (B) Heating curves of MBGC-3Nd microspheres under 808 nm laser irradiation at different power densities; (C) Heating curves of MBGC-3Nd/SA immersed in SBF under 808 nm laser irradiation (2.4 W/cm2); (D) Energy level diagram of Nd3+ The color figures can be obtained from online edition
Fig. 5 Characterization of MBGC-3Nd/SA bone cement (A) Photo of extruded bone cement; (B) SEM image of MBGC-3Nd/SA; (C) Schematic illustration of the setting process of MBGC-3Nd/SA The color figures can be obtained from online edition
Fig. 6 Setting properties of MBGC-xNd/SA (A) Setting time; (B) Injectability; (C) Compressive strength; (D) Anti-washout property. *: p<0.05 (n=5) The color figures can be obtained from online edition
Fig. 7 (A) Proliferation results and (B) alkaline phosphate activity of rBMSCs cultured in the bone cement extract *: p < 0.05; **: p < 0.01. (n = 5). The color figure can be obtained from online edition
Fig. 8 Relative survival of MG-63 cells co-cultured with (A) bone cement under 808 nm laser irradiation at a power density of 2.4 W/cm2 for 5 min and (B) MBGC-3Nd/SA under PTT, CHT or combination therapy. *: p<0.05; **: p<0.01, ***: p<0.001 (n=5) The color figures can be obtained from online edition
[1] | RAINUSSO N, WANG L L, YUSTEIN J T. The adolescent and young adult with cancer: state of the art-bone tumors. Current Oncolology Reports, 2013, 15(4): 296-307. |
[2] | BALLATORI S E, HINDS P W. Osteosarcoma: prognosis plateau warrants retinoblastoma pathway targeted therapy. Signal Transduction Target Therapy, 2016, 1: 16001-12. |
[3] |
LIAO J F, SHI K, JIA Y P, et al. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioactive Materials, 2021, 6(8): 2221-2230.
DOI URL |
[4] |
WANG W H, YEUNG K W K. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Materials, 2017, 2(4): 224-247.
DOI URL |
[5] | CUI X, ZHANG Y D, WANG H, et al. An injectable borate bioactive glass cement for bone repair: preparation, bioactivity and setting mechanism. Journal of Non-Crystalline Solids, 2016, 432: 150-157. |
[6] | CUI X, ZHAO C J, GU Y F, et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. Journal of Material Science: Mater ials in Medicine, 2014, 25(3): 733-745. |
[7] | XIE X, PANG L B, YAO A H, et al. Nanocement produced from borosilicate bioactive glass nanoparticles composited with alginate. Australian Journals of Chemistry, 2019, 72(5): 354-361. |
[8] | CHANG Y C, ZHAO R L, WANG H, et al. A novel injectable whitlockite-containing borosilicate bioactive glass cement for bone repair. Journal of Non-Crystalline Solids, 2020, 547: 120291-11. |
[9] | WU Z F, LIN Z Y, YAO A H, et al. Influence of particle size distribution on the rheological properties and mathematical model fitting of injectable borosilicate bioactive glass bone cement. Ceramics International, 2020, 46(15):24395-24406. |
[10] |
PANG L B, WANG D P. Drug carrier based on mesoporous borosilicate glass microspheres. Journal of Inorganic Materials, 2022, 37(7): 780-786.
DOI URL |
[11] | LI J, ZHANG C T, GONG S M, et al. A nanoscale photothermal agent based on a metal-organic coordination polymer as a drug-loading framework for effective combination therapy. Acta Biomaterialia, 2019, 94: 435-446. |
[12] | ZHAO Q F, WANG X D, YANG M, et al. Multi-stimuli responsive mesoporous carbon nano-platform gated by human serum albumin for cancer thermo-chemotherapy. Colloids Surface B Biointerfaces, 2019, 184: 110532-11. |
[13] |
ZHANG T, JIANG Z Q, XVE T, et al. One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. Nanoscale, 2019, 11(45): 21759-21766.
DOI PMID |
[14] |
WANG L L, HERVAULT A, SOUTHERN P, et al. In vitro exploration of the synergistic effect of alternating magnetic field mediated thermo-chemotherapy with doxorubicin loaded dual pH- and thermo-responsive magnetic nanocomposite carriers. Journal of Materials Chemistry B, 2020, 8(46): 10527-10539.
DOI URL |
[15] | YANG Y, LIN Y Z, DI D H, et al. Gold nanoparticle-gated mesoporous silica as redox-triggered drug delivery for chemo-photothermal synergistic therapy. Journal of Colloid Interface Science, 2017, 508: 323-331. |
[16] |
ZHAO L Z, YUAN W, THAM H P, et al. Fast-clearable nanocarriers conducting chemo/photothermal combination therapy to inhibit recurrence of malignant tumors. Small, 2017, 13(29): 1700963-9.
DOI URL |
[17] | ROSAL B D, ROCHA U, XIMENDES E C, et al. Nd3+ ions in nanomedicine: perspectives and applications. Optical Materials, 2017, 63: 185-196. |
[18] |
ROSAL B D, DELGADO A P, CARRASCO E, et al. Neodymium-based stoichiometric ultrasmall nanoparticles for multifunctional deep-tissue photothermal therapy. Advanced Optical Materials, 2016, 4(5): 782-789.
DOI URL |
[19] |
ROCHA U, CARLOS J, SILVA W F, et al. Sub-tissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano, 2013, 7(2): 1188-1199.
DOI URL |
[20] |
MA L L, ZHOU Y L, ZHANG Z W B, et al. Multifunctional bioactive Nd-Ca-Si glasses for fluorescence thermometry, photothermal therapy, and burn tissue repair. Science Advances, 2020, 6(32): eabb1311-12.
DOI URL |
[21] |
ROCHA U, KUMAR K U, JACINTO C, et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small, 2014, 10(6): 1141-1154.
DOI URL |
[22] |
XIE W H, CHEN X Y, LI Y L, et al. Facile synthesis and in vitro bioactivity of radial mesoporous bioactive glass with high phosphorus and calcium content. Advanced Powder Technology, 2020, 31(8): 3307-3317.
DOI URL |
[23] | WANG X, WANG G, ZHANG Y. Research on the biological activity and doxorubicin release behavior in vitro of mesoporous bioactive SiO2-CaO-P2O5 glass nanospheres. Applied Surface Science, 2017, 419: 531-539. |
[24] | ZHU Y F, KOCKRICK E, IKOMA T, et al. An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. Chemistry of Materials, 2009, 21: 2547-2553 |
[25] |
TIAN T, HAN Y, MA B, et al. Novel Co-akermanite (Ca2CoSi2O7) bioceramics with the activity to stimulate osteogenesis and angiogenesis. Journal of Materials Chemistry B, 2015, 3(33): 6773-6782.
DOI URL |
[26] | WARREN B E, PINCUS A G. Atomic consideration of immiscibility in glass systems. Journal of American Ceramics Society, 1940, 23: 301-304. |
[27] | ANAND V, SINGH K J, KAUR K. Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer. Journal of Non-Crystalline Solids, 2014, 406: 88-94. |
[28] |
SANCHEZ-SALCEDO S, MALAVASI G, SALINAS A J, et al. Highly-bioreactive silica-based mesoporous bioactive glasses enriched with gallium(III). Materials (Basel), 2018, 11(3): 367-17.
DOI URL |
[29] | ZHOU J, WANG H, ZHAO S C, et al. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing. Material Science Engineering C: Materials for Biological Application, 2016, 60: 437-445. |
[30] |
STOUWDAM J W, VEGGEL F. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Letters, 2002, 2(7): 733-737.
DOI URL |
[31] |
WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors. RSC Advances, 2015, 5(105): 86219-86236.
DOI URL |
[32] |
HEMMER E, ACOSTA-MORA P, MENDEZ-RAMOS J, et al. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. Journal of Materials Chemistry B, 2017, 5(23): 4365-4392.
DOI PMID |
[33] |
BALAKRISHNAN B, JAYAKRISHNAN A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005, 26(18): 3941-3951.
DOI URL |
[34] |
BALAKRISHNAN B, JOSHI N, JAYAKRISHNAN A, et al. Self- crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomaterialia, 2014, 10(8): 3650-3663.
DOI URL |
[35] | QU Y, ZHUANG H, ZHANG M, et al. Bone cements for therapy and regeneration for minimally invasive treatment of neoplastic bone defects. Journal of Materials Chemistry B, 2021, 9: 4355-4364. |
[36] | LIN S W, LI X Q, LIU S Y, et al. Inhibition of combination of icaritin and doxorubicin on human osteosarcoma MG-63 cells in vitro. Chinese Journal of Integrated Traditional & Western Medicine, 2016, 36(6): 729-734. |
[37] | ZHAO Y K, TANG S S, GUO J M, et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Scientific Reports, 2017, 7: 44758. |
[38] |
CUI X, ZHANG Y D, WANG J Y, et al. Strontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/β-catenin signaling pathway. Bioactive Materials, 2020, 5(2): 334-347.
DOI PMID |
[39] | PANG L B, SHEN Y F, HU H R, et al. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration. Material Science Engineering C: Materials in Biological Application, 2019, 105: 110076-12. |
[40] |
BI L X, RAHAMAN M N, DAY D E, et al. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomaterialia, 2013, 9(8): 8015-8026.
DOI PMID |
[41] |
GU Y F, HUANG W H, RAHAMAN M N, et al. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomaterialia, 2013, 9(11): 9126-9136.
DOI PMID |
[42] |
RAHAMAN M N, DAY D E, BAL B S, et al. Bioactive glass in tissue engineering. Acta Biomaterialia, 2011, 7(6): 2355-2373.
DOI PMID |
[43] | PARK M, LI Q, SHCHEYNIKOV N, et al. NaBCl is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mollecular Cell, 2004, 16(3): 331-341. |
[44] | NIKFARJAM M, MURALIDHARAN V, CHRISTOPHI C. Mechanisms of focal heat destruction of liver tumors. Journal of Surgical Research, 2005, 127: 208-223. |
[45] |
CHU K F, DUPUY D E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Reviews Cancer, 2014, 14(3): 199-208.
DOI PMID |
[46] |
MONFOULRT L E, BECQUART P, MARCHAT D, et al. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Tissue Engineering Part A, 2014, 20(13): 1827-1840.
DOI URL |
[47] |
MA H S, JIANG C, ZHAI D, et al. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Advanced Functional Materials, 2016, 26(8): 1197-1208.
DOI URL |
[48] |
XU C, MA B, PENG J L, et al. Tricalcium silicate/graphene oxide bone cement with photothermal properties for tumor ablation. Journal of Materials Chemistry B, 2019, 7(17): 2808-2818.
DOI PMID |
[49] | LIU Y Q, LIN R C, MA L L, et al. Mesoporous bioactive glass for synergistic therapy of tumor and regeneration of bone tissue. Applied Materials Today, 2020, 19: 100578-14. |
[50] | ZHU X J, FENG W, CHANG J, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communication, 2016, 7: 10437-10. |
[51] |
ZHENG M B, YUE C X, MA Y F, et al. Single- step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3): 2056-2067.
DOI URL |
[52] | SHUKLA N, SINGH B, KIM H J, et al. Combinational chemotherapy and photothermal therapy using a gold nanorod platform for cancer treatment. Particle & Particle Systems Characterization, 2020, 37(8): 2000099-15. |
[53] |
MENG Z Q, WEI F, WANG R H, et al. NIR- laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors. Advanced Materials, 2016, 28(2): 245-253.
DOI URL |
[1] | 倪晓诗, 林子扬, 秦沐严, 叶松, 王德平. 硅烷化介孔硼硅酸盐生物玻璃微球对PMMA骨水泥生物活性和力学性能的影响[J]. 无机材料学报, 2023, 38(8): 971-977. |
[2] | 林子扬, 常宇辰, 吴章凡, 包荣, 林文庆, 王德平. 不同模拟体液对硼硅酸盐生物活性玻璃基骨水泥矿化性能的影响[J]. 无机材料学报, 2021, 36(7): 745-752. |
[3] | 常宇辰, 林子扬, 谢昕, 吴章凡, 姚爱华, 叶松, 林健, 王德平, 崔旭. 基于介孔硼硅酸盐生物活性玻璃微球的可注射复合骨水泥[J]. 无机材料学报, 2020, 35(12): 1398-1406. |
[4] | 李海滨, 王德平, 吴莹莹, 姚爱华, 叶 松. 柠檬酸浓度对硼酸盐玻璃骨水泥性能的影响[J]. 无机材料学报, 2017, 32(8): 831-836. |
[5] | 吴莹莹, 叶 松, 姚爱华, 李海滨, 贾伟涛, 黄文旵, 王德平. 气体发泡剂—NaHCO3和C6H8O7对可注射多孔硼酸盐玻璃基骨水泥性能的影响[J]. 无机材料学报, 2017, 32(7): 777-784. |
[6] | 余素春, 喻 莹, 戴红莲. 明胶微球/磷酸镁基骨水泥复合药物缓释体系的构建[J]. 无机材料学报, 2017, 32(6): 655-660. |
[7] | 黄 萍, 李 鹏, 赵军胜, 屈树新, 冯 波, 翁 杰. 机械活化增强多孔磷酸钙骨水泥支架的研究[J]. 无机材料学报, 2015, 30(4): 432-438. |
[8] | 赵军胜, 屈树新, 黄 萍, 刘宗光, 王铈汶, 翁 杰. 纳米晶体纤维素增强磷酸钙骨水泥的研究[J]. 无机材料学报, 2015, 30(3): 318-324. |
[9] | 戴红莲, 胡付俭, 方彩萍, 李世普. 可注射镁基磷酸钙骨水泥的研究[J]. 无机材料学报, 2014, 29(9): 991-996. |
[10] | 杨国敬, 林 勉, 张 雷, 苟中入. 骨损伤修复用硫酸钙及其无机复合材料的研究进展[J]. 无机材料学报, 2013, 28(8): 795-803. |
[11] | 邱 添, 黄静静, 张 苗, 王先福, 李 辰, 卢晓英, 翁 杰. 不同碳纳米管/羟基磷灰石复合粉末的添加对磷酸钙骨水泥性能和结构的影响[J]. 无机材料学报, 2013, 28(1): 91-96. |
[12] | 姜晓鑫, 屈树新, 林孙忠, 段 可, 翁 杰. 骨碎补载入对磷酸钙骨水泥性能的影响及体外生物学评价[J]. 无机材料学报, 2011, 26(1): 29-37. |
[13] | 李茂红1,2, 屈树新2, 姚 宁2,3, 郭悦华2, 张 涛2, 翁 杰2. 载不同浓度香丹注射液磷酸钙骨水泥性能研究[J]. 无机材料学报, 2010, 25(5): 507-511. |
[14] | 董浩,叶建东,王秀鹏,杨娟娟. 磷酸钙骨水泥大孔径多孔组织工程支架的制备及其纤维增强[J]. 无机材料学报, 2007, 22(5): 1007-1010. |
[15] | 王莹,魏杰,郭瀚,刘昌胜. 抗水型钙磷水泥生物活性骨修复材料研究[J]. 无机材料学报, 2006, 21(6): 1435-1442. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||