[1] CHE R C, PENG L M, DUAN X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater., 2004, 16(5): 401–405.
[2] LI JIA, LIU HONG-BO, YANG LI. Research on microwave absorption properties of FeCo/graphite nanocomposite. Journal of Inorganic Materials, 2014, 29(5): 470–474.
[3] ZHANG X F, GUO J J, QIN G W. Assembled micro-nano particles with multiple interface polarizations for electromagnetic absorption at gigahertz. Appl. Phys. Lett., 2014, 104(25): 252404–1–4.
[4] SUN D P, ZOU Q, WANG Y P, et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale, 2014, 6(12): 6557– 6562.
[5] XIANG J, LI J, ZHANG X H, et al. Magnetic carbon nanofi bers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater. Chem. A, 2014, 2(40): 16905–16914.
[6] QING Y C, ZHOU, W C, LUO F, et al. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon, 2012, 48(14): 4074–4080.
[7] VINAYASREE S, SOLOMAN M A, SUNNY V, et al. A microwave absorber based on strontium ferrite-carbon black-nitrile rubble for S and X-band applications. Compos. Sci. Technol., 2013, 82: 69–75.
[8] MENG X G, WAN Y Z, LI Q Y, et al. The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe3O4 films. Appl. Surf. Sci., 2011, 257(24): 10808–10814.
[9] LIU Y, LIU X X, WANG X J. Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites. J. Alloys Compd., 2014, 584: 249–253.
[10] QING Y C, ZHOU W C, LUO F, et al. Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption. J. Magn. Magn. Mater., 2011, 323(5): 600–606.
[11] LIU Q L, CAO B, FENG C L, et al. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Compos. Sci. Technol., 2012, 72(13): 1632– 1636.
[12] XIE WEI, CHENG HAI-FENG, CHU ZENG-YONG, et al. Radar absorbing properties of light radar absorbing materials based on hollow porous carbon fibers. Journal of Inorganic Materials, 2009, 24(2): 320–324.
[13] XIANG JUN, ZHANG XIONG-HUI, YE QIN, et al. Structural design and absorption properties of double-layer microwave absorbers based on Li0.35Zn0.3Fe2.35O4 and carbon nanofibers. Chinese Journal of Inorganic Chemistry, 2014, 30(4): 845–852.
[14] HUANG X G, ZHANG J, XIAO S R, et al. The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J. Am. Ceram. Soc., 2014, 97(5): 1363–1366.
[15] ZHANG M, LIU C Q, ZI Z F, et al. Magnetic and microwave absorption properties of Ni1-xZnxFe2O4 nanocrystalline synthesized BY Sol-Gel Method. Sci. China Technol. Sci., 2013, 56(1): 13–19.
[16] Ma Z, Cao C T, Yuan J, et al. Enhanced microwave absorption of BaTiO3-based ferroelectric/ferromagnetic nanocomposite. Appl. Surf. Sci., 2012, 258(19): 7556–7561.
[17] XIE F, LIU J W, GU D, et al. Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus. Nanoscale, 2011, 3(9): 3860–3867.
[18] ZHU Y F, ZHANG L, NATSUKI T, et al. Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. ACS Appl. Mater. Interfaces, 2012, 4(4): 2101–2106.
[19] YANG J, ZHANG J, LIANG C Y, et al. Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Appl. Mater. Interfaces, 2013, 3(15): 7146–7151.
[20] JING L N, WANG G Q, DUAN Y P, et al. Synthesis and electromagnetic characteristics of the flake-shaped barium titanate powder. J. Alloys Compd., 2009, 475(1/2): 862–868.
[21] GUAN P F, ZHANG X F, GUO J J. Assembled Fe3O4 nanoparticles on graphene for enhanced electromagnetic wave losses. Appl. Phys. Lett., 2012, 101(15): 153108–1–4.
[22] ZHANG Q, LI C F, CHEN Y N, et al. Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite. Appl. Phys. Lett., 2010, 97(13): 133115–1–3.
[23] KONG L B, LI Z W, LIU L, et al. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev., 2013, 58(4): 203–259.
[24] MANDAL A, DAS C K. Effect of BaTiO3 on the microwave absorbing properties of Co-doped Ni-Zn ferrite nanocomposites. J. Appl. Ploym. Sci., 2014, 131(4): 39926–1–9.
[25] LIU Q L, ZHANG D, FAN T X. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett., 2008, 93(1): 013110–1–3.
[26] HUANG X, LU M, ZHANG X, et al. Carbon microtube/Fe3O4 nanocomposite with improved wave-absorbing performance. Scripta Mater., 2012, 67(6): 613–616.
[27] ZHAO D L, LV Q, SHEN Z M. Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites. J. Alloys Compd., 2009, 480(2): 634–638. |