[1] |
Sun J J, Bae C J, Koh Y H, et al. Fabrication of hydroxyapatite- poly(epsilon-caprolactone) scaffolds by a combination of the extrusion and bi-axial lamination processes. J. Mater Sci.: Mater. Med., 2007, 18(6): 1017-1023.
|
[2] |
Huang J, Jayasinghe S N, Best S M, et al. Electrospraying of a nano-hydroxyapatite suspension. J. Mater. Sci., 2004, 39(3): 1029-1032.
|
[3] |
Kumar R, Prakash K, Cheang P, et al. Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir, 2004, 20(13): 5196-5200.
|
[4] |
LIAO Jian-Guo, ZHANG Li, ZUO Yi, et al. Surface modification of nano-hydroxyapatite with stearic acid. Chin. J. Inorg. Chem., 2009, 25(7): 1267-1273.
|
[5] |
LIANG Qiong, HAN Dong-Mei, GU Fu-Bo, et al. Synthesis of hydroxyapatite nanorods by hydrothermal recrystallization method. Chin. J. Inorg. Chem., 2007, 23(1): 86-90.
|
[6] |
SUN Yan-Rong, FAN Tao, HUANG Yong, et al. Research trend and prospect of hydroxyapatite bioceramics materials. J. Chin. Ceram. Soc., 2010, 38(6): 1145-1150.
|
[7] |
LI Ling, LIU Yu-Kan, TAO Jin-Hui, et al. Synthesis and characterization of terbium-doped nano-hydroxyapatite biological flurescent probe. Chin. J. Inorg. Chem., 2008, 24(9): 1369-1373.
|
[8] |
Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater., 2010, 9(12): 1004-1009.
|
[9] |
Peroosa S, Dub Z, Henriette N, et al. A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxyapatite. Biomaterials, 2006, 27(9): 2150-2161.
|
[10] |
Mendonca G, Mendonca D B S, Aragao F J L, et al. Advancing dental implant surface technology-from micron-to nanotopography. Biomaterials, 2008, 29(28): 3822-3835.
|
[11] |
Yanagida H, Okada M, Masuda M, et al. Cell adhesion and tissue response to hydroxyapatite nanocrystal- coated poly(L-lactic acid) fabric. J. Biosci. Bioeng., 2009, 108(3): 235-243.
|
[12] |
Ren F Z, Xin R L, Ge X, et al. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater., 2009, 5(8): 3141-3149.
|
[13] |
Zhang Y Z, Venugopal J R, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomater., 2008, 29(32): 4314-4322.
|
[14] |
Zhang H P, Lu X, Leng Y, et al. Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomater., 2009, 5(4): 1169-1181.
|
[15] |
Panda R N, Hsieh M F, Chung R J, et al. FTIR, XRD, SEM and solid state NMR investigations of carbonate- containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J. Phys. Chem. Solids, 2003, 64(2): 193-199.
|
[16] |
Mao X, Chu C L, Mao Z, et al. The development and identification of constructing tissue engineered bone by seeding osteoblasts from differentiated rat marrow stromal stem cells onto three-dimensional porous nano- hydroxylapatite bone matrix in vitro. Tissue and Cell, 2005, 37(5): 349-357.
|
[17] |
Kino R, Ikoma T, Yunoki S, et al. Preparation and characterization of multilayered hydroxyapatite/silk fibroin film. J. Biosci. Bioeng., 2007, 103(6): 514-520.
|
[18] |
Pelled G, Tai K, Sheyn D, et al. Structural and nanoindentation studies of stem cell-based tissue-engineered bone. J. Biomech., 2007, 40(2): 399-411.
|
[19] |
Cao Chuan-Bao, Liu Si-Yuan, Lǔ Rui-Tao, et al. One step hydrothermal preparation of ZnSe nanorods and their characterization. Transactions of Beijing Institute of Technology, 2004, 24(10): 932-934.
|
[20] |
Wang F K, Cao B R, Mao C B. Bacteriophage bundles with prealigned Ca2+ initiate the oriented nucleation and growth of hydroxyapatite. J. Chem. Mater., 2010, 22(12): 3630-3636.
|
[21] |
Kazuhiko K, Satoko T, Masato W, et al. Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior. J. Phys. Chem. B, 2010, 114(7): 2399-2404.
|