无机材料学报 ›› 2025, Vol. 40 ›› Issue (12): 1405-1413.DOI: 10.15541/jim20250012

• 研究论文 • 上一篇    下一篇

碱性电解水大电流密度电催化剂的制备及经济性研究

于泽龙1(), 唐春1,2,3(), 饶家豪1, 郭恒1,2,3, 周莹1,2()   

  1. 1.西南石油大学 新能源与材料学院, 成都 610500
    2.氢能绿色制储与高效利用川渝共建重点实验室, 成都 610500
    3.天府永兴实验室, 成都 610213
  • 收稿日期:2025-01-08 修回日期:2025-04-06 出版日期:2025-12-20 网络出版日期:2025-04-27
  • 通讯作者: 唐 春, 副研究员. E-mail: tangchun@swpu.edu.cn;
    周 莹, 教授. E-mail: yzhou@swpu.edu.cn
  • 作者简介:于泽龙(2000-), 男, 硕士研究生. E-mail: 18535069947@163.com
  • 基金资助:
    国家自然科学基金(22109132);四川省自然科学基金(2022NSFSC0023);中国博士后科学基金(2024M750704);天府永兴实验室科技攻关重大项目(2023KJGG15)

Preparation and Economic Analysis of High-current-density Electrocatalysts for Alkaline Water Electrolysis

YU Zelong1(), TANG Chun1,2,3(), RAO Jiahao1, GUO Heng1,2,3, ZHOU Ying1,2()   

  1. 1. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
    2. Sichuan-Chongqing Joint Key Laboratory of Green Hydrogen Production & Storage and Efficient Utilization, Chengdu 610500, China
    3. Tianfu Yongxing Laboratory, Chengdu 610213, China
  • Received:2025-01-08 Revised:2025-04-06 Published:2025-12-20 Online:2025-04-27
  • Contact: TANG Chun, associate professor. E-mail: tangchun@swpu.edu.cn;
    ZHOU Ying, professor. E-mail: yzhou@swpu.edu.cn
  • About author:YU Zelong (2000-), male, Master candidate. E-mail: 18535069947@163.com
  • Supported by:
    National Natural Science Foundation of China(22109132);Sichuan Natural Science Foundation(2022NSFSC0023);China Postdoctoral Science Foundation(2024M750704);Key Grant Technologies Project of Tianfu Yongxing Laboratory(2023KJGG15)

摘要:

碱性电解水(Alkaline Water Electrolysis, AWE)制氢由于其较低的电流密度而面临效率低和成本高的挑战, 需要开发大电流密度下稳定的高效非贵金属电催化剂。本研究在泡沫镍(Nickel Foam, NF)骨架上采用水热法结合磷化技术制备了非晶NiMoOP/NF电催化材料, 非晶针状形貌可以有效增加活性位点数量并提升电解水制氢稳定性, 在10和1000 mA·cm-2的电流密度下, 析氢过电位达到31和370 mV, 并且在1 A·cm-2的大电流密度下可以稳定运行1100 h。将NiMoOP/NF材料应用于全水解与晶硅异质结太阳能电池耦合, 太阳能到氢能的理论转换效率高达18.60%。在工业模拟条件(温度60 ℃, 30%(质量分数) KOH电解液)下, 电解电压在1.77 V可实现400 mA·cm-2的电流密度, 其制氢能耗为4.19 kWh·Nm-3(Nm3: 标准立方米)。结合光伏电解制氢经济性研究表明, 光伏离网非储能制氢系统的最低制氢成本为¥28.52 kg-1。本研究开发的非晶纳米针状结构材料有效提高了电解水制氢活性和稳定性, 为设计大电流密度下制氢催化材料提供了思路, 结合光伏电解水制绿氢经济性分析为绿氢产业发展提供了支撑。

关键词: 电解水制氢, 非晶化设计, 大电流密度, 经济性分析, 平准化制氢成本

Abstract:

Alkaline water electrolysis (AWE) faces challenges of low efficiency and high costs due to its relatively low current density. It is necessary to develop efficient and stable non-precious metal electrocatalysts under high current densities. In this study, an amorphous NiMoOP/NF electrocatalyst was fabricated by the hydrothermal method combined with phosphorization on a nickel foam (NF) substrate. The amorphous needle-like morphology effectively increases active sites and enhances the stability of hydrogen production through water electrolysis. At current densities of 10 and 1000 mA·cm-2, the hydrogen evolution overpotentials are 31 and 370 mV, respectively, and the catalyst stably runs for 1100 h at a high current density of 1 A·cm-2. The NiMoOP/NF material, when integrated with crystalline silicon heterojunction solar cells for overall water splitting, achieves a theoretical solar-to-hydrogen conversion efficiency of up to 18.60%. Under industrially relevant conditions (60 ℃, 30% (in mass) KOH electrolyte), the electrolysis voltage is 1.77 V, enabling a current density of 400 mA·cm-2, with a hydrogen production energy consumption of 4.19 kWh·Nm-3 (Nm3: Normal cubic meter). Economic analysis of photovoltaic-powered hydrogen production via electrolysis indicates that the minimum hydrogen production cost for an off-grid and non-storage photovoltaic hydrogen production system is ¥28.52 kg-1. The amorphous nanoneedle-like materials developed in this study significantly enhanced both hydrogen evolution activity and stability during water electrolysis, providing valuable insights for design of high-current-density hydrogen evolution catalysts. Furthermore, the combined economic analysis of photovoltaic electrolysis for green hydrogen production supports advancement of green hydrogen industry.

Key words: water electrolysis for hydrogen production, amorphous design, high current density, economic analysis, levelized cost of hydrogen

中图分类号: