无机材料学报 ›› 2023, Vol. 38 ›› Issue (8): 893-900.DOI: 10.15541/jim20230008 CSTR: 32189.14.10.15541/jim20230008
收稿日期:
2023-01-04
修回日期:
2023-02-12
出版日期:
2023-08-20
网络出版日期:
2023-03-17
通讯作者:
夏冬林, 副研究员. E-mail: donglinxia@126.com作者简介:
樊家顺(1999-), 男, 硕士研究生. E-mail: 1712723883@qq.com
基金资助:
FAN Jiashun1(), XIA Donglin2(
), LIU Baoshun2
Received:
2023-01-04
Revised:
2023-02-12
Published:
2023-08-20
Online:
2023-03-17
Contact:
XIA Donglin, associate professor. E-mail: donglinxia@whut.edu.cnAbout author:
FAN Jiashun (1999-), male, Master candidate. E-mail: 1712723883@qq.com
Supported by:
摘要:
近年来, 全无机铯铅卤化钙钛矿CsPbX3(X=Cl, Br, I)纳米晶(NCs)材料因具有长载流子寿命、强光吸收、低成本制造和带隙可调性等独特的性能已成为研究的热点, 但专注于CsPbBr3纳米晶瞬态光电导的相关研究却很少。本工作通过配体辅助再沉淀法制备了CsPbBr3纳米晶体, 并改进了光电导薄膜样品的制样方法和真空瞬态光电导测试装置, 研究了不同温度和不同激发功率对CsPbBr3纳米晶瞬态光电导的影响。不同温度的瞬态光电导实验结果表明, 在133~273 K温度范围内, 光生电流衰减速率随着温度增加而逐渐减小, 而在273~373 K温度范围内, 光生电流衰减速率随着温度升高而逐渐增大。不同激发功率的瞬态光电导实验表明, 激发功率从200 mW逐渐增大到1000 mW时, 光生电流衰减速率增大。本工作的研究方法为研究光激发光生载流子的动力学相关行为提供了一个的新思路。
中图分类号:
樊家顺, 夏冬林, 刘保顺. 温度相关的CsPbBr3纳米晶瞬态光电导响应研究[J]. 无机材料学报, 2023, 38(8): 893-900.
FAN Jiashun, XIA Donglin, LIU Baoshun. Temperature Dependent Transient Photoconductive Response of CsPbBr3 NCs[J]. Journal of Inorganic Materials, 2023, 38(8): 893-900.
图1 CsPbBr3 NC薄膜样品的制备流程和瞬态光电导测试原理
Fig. 1 Preparation process of CsPbBr3 NC thin film sample and schematic diagram of the transient photoconduction test (a-c) Preparation process of photoconductive samples; (d) Schematic diagram of the transient photoconduction test
图2 CsPbBr3 NCs的光吸收和PL光谱及其结构与形貌图
Fig. 2 Optical absorption, PL spectra, microstructure and micromorphology of CsPbBr3 NCs (a) Optical absorption and PL spectra of CsPbBr3 NCs in n-hexane; (b) XRD pattern; (c) TEM image; (d) High resolution TEM image
图3 在不同温度和激发功率下光电导样品的光生电流随光循环时间(t)的变化曲线
Fig. 3 Curves of photo-generated current with light cycle time(t) at different temperatures and excitation powers for photoconductive samples (a) Current-voltage curve of 0-40 V measured at 133-373 K; (b, c) Curves of photo-generated current change with light cycle time at different temperatures; (d) Curves of photo-generated current change with light cycle time at different laser excitation power; Colorful figures are available on website
图4 光电导样品的温度相关的载流子光生电流和最快衰减时间常数曲线
Fig. 4 Curves of temperature-dependent carrier photo-generated currents and the fastest decay time constants of the photoconductive samples Enlarged views of (a, b) falling and (c) rising edges with temperature changed from 133 to 373 K; (d, e) Normalized current-time curves and their fitting curves of temperature changed with temperature; (f) The fastest decay time constant τ1 obtained by fitting from experimental data of (d, e) with temperature change; Colorful figures are available on website
Temperatures/K | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
133 | (3.759±0.223) | (124.77±6.69) | (1324.35±361.18) |
153 | (3.723±0.216) | (127.40±5.72) | (1545.52±582.47) |
173 | (3.885±0.209) | (134.73±6.23) | (2141.44±1403.33) |
193 | (4.680±0.260) | (107.52±5.69) | (720.84±118.71) |
213 | (5.015±0.240) | (128.03±4.42) | (1473.34±412.23) |
233 | (5.985±0.322) | (124.42±4.29) | (1725.43±171.92) |
253 | (6.439±0.270) | (133.90±3.88) | (1535.70±80.51) |
273 | (7.721±0.193) | (133.68±2.92) | (1249.10±30.38) |
293 | (5.792±0.152) | (121.84±2.33) | (1249.65±34.02) |
313 | (5.176±0.140) | (123.42±2.59) | (1215.50±43.39) |
333 | (5.238±0.137) | (119.48±2.78) | (1061.38±47.03) |
353 | (4.638±0.114) | (115.78±3.05) | (1127.95±113.98) |
373 | (4.254±0.128) | (116.16±4.02) | (2370.56±1223.21) |
表1 不同温度下时间-归一化光生电流曲线的各拟合参数
Table 1 Fitting parameters of time normalized current curve at different temperatures
Temperatures/K | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
133 | (3.759±0.223) | (124.77±6.69) | (1324.35±361.18) |
153 | (3.723±0.216) | (127.40±5.72) | (1545.52±582.47) |
173 | (3.885±0.209) | (134.73±6.23) | (2141.44±1403.33) |
193 | (4.680±0.260) | (107.52±5.69) | (720.84±118.71) |
213 | (5.015±0.240) | (128.03±4.42) | (1473.34±412.23) |
233 | (5.985±0.322) | (124.42±4.29) | (1725.43±171.92) |
253 | (6.439±0.270) | (133.90±3.88) | (1535.70±80.51) |
273 | (7.721±0.193) | (133.68±2.92) | (1249.10±30.38) |
293 | (5.792±0.152) | (121.84±2.33) | (1249.65±34.02) |
313 | (5.176±0.140) | (123.42±2.59) | (1215.50±43.39) |
333 | (5.238±0.137) | (119.48±2.78) | (1061.38±47.03) |
353 | (4.638±0.114) | (115.78±3.05) | (1127.95±113.98) |
373 | (4.254±0.128) | (116.16±4.02) | (2370.56±1223.21) |
图5 激发功率相关的光电导样品载流子光生电流和最快衰减时间常数曲线
Fig. 5 Curves of excitation power-dependent carrier photo-generated current and the fastest decay time constant of the photoconductive samples (a) Curve of photo-generated current of samples with light cycle time at different excitation power; (b) Normalized current-time curve and their fitting curve with different excitation power; (c) The fastest decay time constant τ1 obtained by fitting from experimental data of (b) with excitation power change; Colorful figures are available on website
Power/mW | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
200 | (25.955±0.493) | (117.67±22.31) | (822.18±234.43) |
300 | (15.411±0.686) | (91.76±17.61) | (502.61±110.28) |
400 | (10.856±0.392) | (86.72±13.96) | (423.04±60.38) |
500 | (13.300±0.351) | (100.49±15.70) | (444.26±71.77) |
600 | (10.824±0.281) | (52.30±4.84) | (318.36±12.73) |
700 | (8.775±0.322) | (74.87±6.95) | (353.29±21.81) |
800 | (11.546±0.210) | (62.75±6.64) | (325.15±15.40) |
900 | (11.412±0.183) | (89.94±7.53) | (386.28±29.85) |
1000 | (9.431±0.132) | (51.78±2.85) | (294.00±7.33) |
表2 不同功率下时间-归一化光生电流曲线的各拟合参数
Table 2 Fitting parameters of time normalized current curve at different powers
Power/mW | τ1/μs | τ2/μs | τ3/μs |
---|---|---|---|
200 | (25.955±0.493) | (117.67±22.31) | (822.18±234.43) |
300 | (15.411±0.686) | (91.76±17.61) | (502.61±110.28) |
400 | (10.856±0.392) | (86.72±13.96) | (423.04±60.38) |
500 | (13.300±0.351) | (100.49±15.70) | (444.26±71.77) |
600 | (10.824±0.281) | (52.30±4.84) | (318.36±12.73) |
700 | (8.775±0.322) | (74.87±6.95) | (353.29±21.81) |
800 | (11.546±0.210) | (62.75±6.64) | (325.15±15.40) |
900 | (11.412±0.183) | (89.94±7.53) | (386.28±29.85) |
1000 | (9.431±0.132) | (51.78±2.85) | (294.00±7.33) |
[1] |
HERZ L M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annual Review of Physical Chemistry, 2016, 67(1): 65.
DOI URL |
[2] |
MANSER J S, KAMAT P V. Band filling with free charge carriers in organometal halide perovskites. Nature Photonics, 2014, 8(9): 737.
DOI |
[3] |
WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584.
DOI URL |
[4] |
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519.
DOI URL |
[5] |
GUO Z, MANSER J S, WAN Y, et al. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 2015, 6(1): 7471.
DOI |
[6] |
LIU S, WANG L, LIN W C, et al. Imaging the long transport lengths of photo-generated carriers in oriented perovskite films. Nano Letters, 2016, 16(12): 7925.
DOI URL |
[7] |
WANG N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699.
DOI |
[8] |
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light- emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687.
DOI |
[9] |
XING G, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014, 13(5): 476.
DOI |
[10] |
HU X, ZHANG X, LIANG L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373.
DOI URL |
[11] |
HU Q, WU H, SUN J, et al. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8(9): 5350.
DOI URL |
[12] | HU W, HUANG W, YANG S, et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Advanced Materials, 2017, 29(43): 1703256. |
[13] |
THUMU U, PIOTROWSKI M, OWENS-BAIRD B, et al. Zero- dimensional cesium lead halide perovskites: phase transformations, hybrid structures, and applications. Journal of Solid State Chemistry, 2019, 271: 361.
DOI URL |
[14] |
DARMAWAN Y A, YAMAUCHI M, MASUO S. In situ observation of a photodegradation-induced blueshift in perovskite nanocrystals using single-particle spectroscopy combined with atomic force microscopy. The Journal of Physical Chemistry C, 2020, 124(34): 18770.
DOI URL |
[15] |
ZHANG X, ZHAO D, LIU X, et al. Ferroelastic domains enhanced the photoelectric response in a CsPbBr3 single-crystal film detector. The Journal of Physical Chemistry Letters, 2021, 12(35): 8685.
DOI URL |
[16] |
KAUR G, BABU K J, GHOSH H N. Temperature-dependent interplay of polaron formation and hot carrier cooling dynamics in CsPbBr3 nanocrystals: role of carrier-phonon coupling strength. The Journal of Physical Chemistry Letters, 2020, 11(15): 6206.
DOI URL |
[17] |
EAMES C, FROST J M, BARNES P R F, et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 2015, 6(1): 7497.
DOI |
[18] |
MIYATA A, MITIOGLU A, PLOCHOCKA P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics, 2015, 11(7): 582.
DOI |
[19] |
CHRISTIANS J A, MANSER J S, KAMAT P V. Multifaceted excited state of CH3NH3PbI3. Charge separation, recombination, and trapping. The Journal of Physical Chemistry Letters, 2015, 6(11): 2086.
DOI URL |
[20] |
YANG Y, YANG M, LI Z, et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. The Journal of Physical Chemistry Letters, 2015, 6(23): 4688.
DOI URL |
[21] |
PIATKOWSKI P, COHEN B, PONSECA C S, et al. Unraveling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film. The Journal of Physical Chemistry Letters, 2016, 7(1): 204.
DOI URL |
[22] |
KAUR G, GHOSH H N. Hot carrier relaxation in CsPbBr3-based perovskites: a polaron perspective. The Journal of Physical Chemistry Letters, 2020, 11(20): 8765.
DOI URL |
[23] |
HOYE R L Z, BRANDT R E, OSHEROV A, et al. Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chemistry - A European Journal, 2016, 22(8): 2605.
DOI URL |
[24] |
PAL J, MANNA S, MONDAL A, et al. Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites. Angewandte Chemie International Edition, 2017, 56(45): 14187.
DOI URL |
[25] |
ABULIKEMU M, OULD-CHIKH S, MIAO X, et al. Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. Journal of Materials Chemistry A, 2016, 4(32): 12504.
DOI URL |
[26] | UMAR F, ZHANG J, JIN Z, et al. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method. Advanced Optical Materials, 2019, 7(5): 1801368. |
[27] |
AWNI R A, SONG Z, CHEN C, et al. Influence of charge transport layers on capacitance measured in halide perovskite solar cells. Joule, 2020, 4(3): 644.
DOI URL |
[28] |
ALMORA O, GARCÍA-BATLLE M, GARCIA-BELMONTE G. Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. The Journal of Physical Chemistry Letters, 2019, 10(13): 3661.
DOI URL |
[29] | PECUNIA V, ZHAO J, KIM C, et al. Assessing the impact of defects on lead-free perovskite-inspired photovoltaics via photoinduced current transient spectroscopy. Advanced Energy Materials, 2021, 11(22): 2003968. |
[30] |
BARNES P R F, MIETTUNEN K, LI X, et al. Interpretation of optoelectronic transient and charge extraction measurements in dye-sensitized solar cells. Advanced Materials, 2013, 25(13): 1881.
DOI URL |
[31] |
SETH S, SAMANTA A. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Scientific Reports, 2016, 6(1): 37693.
DOI |
[32] |
GORDILLO G, OTÁLORA C A, RAMIREZ A A. A study of trap and recombination centers in MAPbI3 perovskites. Physical Chemistry Chemical Physics, 2016, 18(48): 32862.
DOI URL |
[33] |
LI J, YUAN X, JING P, et al. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Advances, 2016, 6(82): 78311.
DOI URL |
[34] |
LIAO M, SHAN B, LI M. In situ Raman spectroscopic studies of thermal stability of all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals. The Journal of Physical Chemistry Letters, 2019, 10(6): 1217.
DOI URL |
[35] | MIRANDA P B, HEEGER A J, MOSES D. Ultrafast photogeneration of charged polarons in conjugated polymers. Physical Review B, 2001, 64(8): 1201. |
[36] |
YETTAPU G R, TALUKDAR D, SARKAR S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Letters, 2016, 16(8): 4838.
DOI URL |
[37] |
LI X, WU Y, ZHANG S, et al. Quantum dots: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light- emitting diodes. Advanced Functional Materials, 2016, 26(15): 2584.
DOI URL |
[38] |
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design, 2013, 13(7): 2722.
DOI URL |
[39] |
DU W, ZHANG S, WU Z, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 2019, 11(7): 3145.
DOI URL |
[40] |
YAMADA Y, NAKAMURA T, ENDO M, et al. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. Journal of the American Chemical Society, 2014, 136(33): 11610.
DOI URL |
[1] | 刘灿军, 陈述, 李洁. CdS/TiO2纳米晶薄膜的原位法制备及光电化学性能研究[J]. 无机材料学报, 2018, 33(12): 1343-1348. |
[2] | 李 裕, 米 琴, 薛泽慧. 磁性MCM-41分离回收RT培司废水中四甲基氢氧化铵的研究[J]. 无机材料学报, 2016, 31(7): 694-698. |
[3] | 赵丹丹, 于彦龙, 高东子, 曹亚安. 金红石二氧化钛纳米片的性质及其光催化活性[J]. 无机材料学报, 2016, 31(1): 1-6. |
[4] | 赵 鹏, 李 忠, 崔晓莉. 碳掺杂TiO2纳米管电极的简易制备及其光电化学性能[J]. 无机材料学报, 2015, 30(6): 599-604. |
[5] | 陆 强, 张智博, 董长青, 张晓媛, 崔方明. 碳-银共修饰的双晶介孔二氧化钛及其可见光催化活性[J]. 无机材料学报, 2014, 29(12): 1333-1338. |
[6] | 马占营, 姚秉华, 张 萍. 双亲性w/o-SiO2-void-TiO2中空核壳微球的合成及表征[J]. 无机材料学报, 2014, 29(4): 364-370. |
[7] | 刘仁臣, 吴永刚, 夏子奂. 氧化锌脱膜和激光刻蚀制备亚微米自支撑聚酰亚胺薄膜及其性能[J]. 无机材料学报, 2013, 28(12): 1349-1353. |
[8] | 吴 俊, 王爱军, 陈胜利, 袁桂梅, 王晓东, 张 琳. TiO2反蛋白石结构膜材料改性及其光催化活性研究[J]. 无机材料学报, 2013, 28(3): 283-286. |
[9] | 王志军, 李 妍, 王 颖, 李盼来, 郭庆林, 杨志平. Eu2+在KNaCa2(PO4)2中的发光及晶体学格位[J]. 无机材料学报, 2011, 26(7): 731-734. |
[10] | 罗 军, 廖 斌, 陈一鸣, 刘安东, 刘培生. TiO2纳米管负载纳米金的制备及其在紫外光下的光电性能[J]. 无机材料学报, 2010, 25(5): 557-560. |
[11] | 杨绳岩,张 娜,吴振奕. 新型太阳能材料C60Pt(dppp)配合物的合成及性能[J]. 无机材料学报, 2009, 24(1): 18-22. |
[12] | 张卫国,刘洋,王飙,李贺,姚素薇. 纳米TiO2修饰 Ni-W-P电极的制备及其光电催化析氢性能[J]. 无机材料学报, 2007, 22(4): 765-768. |
[13] | 吴振奕,杨森根,林永生,程大典,詹梦熊. 碳60·双二苯基膦乙烷合钯的合成和光电转化性能[J]. 无机材料学报, 2005, 20(6): 1322-1328. |
[14] | 蒋引珊,金为群,张军,方送生. TiO2/沸石复合物结构与光催化性能[J]. 无机材料学报, 2002, 17(6): 1301-1305. |
[15] | 蒋洪川,杨仕清,张文旭,彭斌,王豪才. 溶胶-凝胶法合成Y3Al5O12:Ce3+,Tb3+稀土荧光粉的研究[J]. 无机材料学报, 2001, 16(4): 720-722. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||