无机材料学报 ›› 2023, Vol. 38 ›› Issue (4): 437-444.DOI: 10.15541/jim20220721 CSTR: 32189.14.10.15541/jim20220721
所属专题: 【信息功能】神经形态材料与器件(202409)
• 专栏:神经形态材料与器件(特邀编辑:万青) • 上一篇 下一篇
收稿日期:
2022-11-30
修回日期:
2023-01-31
出版日期:
2023-04-20
网络出版日期:
2023-02-07
通讯作者:
周广东, 教授. E-mail: zhougd@swu.edu.cn作者简介:
王彤宇(2001-), 女. E-mail: 2278117615@qq.com
基金资助:
WANG Tongyu1(), RAN Haofeng1, ZHOU Guangdong1,2(
)
Received:
2022-11-30
Revised:
2023-01-31
Published:
2023-04-20
Online:
2023-02-07
Contact:
ZHOU Guangdong, professor. E-mail: zhougd@swu.edu.cnAbout author:
WANG Tongyu (2001-), female. E-mail: 2278117615@qq.com
Supported by:
摘要:
模拟型阻变突触特性能够为神经形态计算提供高的计算精度并避免计算过程中带来的电导卡滞、跃变以及失效等问题。模拟生物突触在刺激脉冲下的行为, 能够更好地揭示电子器件的仿生特性机理并为高性能神经形态计算提供支撑。突触双脉冲易化是生物突触的重要特性, 反映了在外界刺激作用下的易化和适应性过程, 对揭示神经元的工作机制至关重要。为了构建突触双脉冲易化的模拟型忆阻器件, 本研究通过器件的能带结构设计及氧空位缺陷态的调控, 利用射频磁控溅射法制备了一种结构为Ag/FeOx/ITO的忆阻器。电学测试结果表明, 该器件具有优异的渐进递增的非线性阻变特性, 即模拟型阻变特性。在I-V循环扫描3000次范围内, 这种器件均表现出模拟型阻变特性, 可提供稳定的、可分离的16个电导状态, 且在104 s内维持良好, 说明这些电导状态是非易失性的, 这主要归功于电子在氧空位缺陷态中的捕获与去捕获以及在势垒间隧穿行为。但是, 在低电场强度情况下, 捕获的热电子有可能会跃迁出浅陷阱能级, 而呈现出易失性。根据这种器件的易失性和非易失性共存特性, 通过调制电压脉冲宽度、幅度, 器件能够表现出很好的突触双脉冲易化特性, 显示出该类型器件在神经形态计算中的潜力和优势。
中图分类号:
王彤宇, 冉皓丰, 周广东. 氧化铁忆阻器中缺陷态诱导的模拟型阻变及突触双脉冲易化特性[J]. 无机材料学报, 2023, 38(4): 437-444.
WANG Tongyu, RAN Haofeng, ZHOU Guangdong. Defect-induced Analogue Resistive Switching Behavior in FeOx-based Memristor and Synaptic Paired-pulse Facilitation Feature[J]. Journal of Inorganic Materials, 2023, 38(4): 437-444.
图1 Ag/FeOx/ITO忆阻器结构及表征
Fig. 1 Structure and characterization of Ag/FeOx/ITO memristors (a) Schematic diagram of structure of Ag/FeOx/ITO memristors and corresponding SEM section; (b) XRD patterns of FeOx resistance functional layer; (c) XPS spectra of the core-level of the Fe2p; (d) XPS spectra of the core-level of the O1s
图2 Ag/FeOx/ITO忆阻器忆阻特性测试结果
Fig. 2 Results of memristor characteristics of Ag/FeOx/ITO memristors FeOx memristors with different thicknesses of functional layerobtained by changing FeOx growth parameters; (a) Memristor characteristic curves of Ag/FeOx/ITO memristor grown at 100 W/1 h and 80 W/35 min; (b) I-V curve of Ag/FeOx/ITO memristor grown at 100 W/2 h; (c, d) Analog resistance characteristic curve phenomena of memristor in the negative voltage region (c) and positive voltage region (d); (e) I-V curves of 100 different devices under the same conditions; (f) Regulation of voltage sweep rate on analog resistive characteristics; (g) Regulation of analog resistance characteristics by different sweep voltage amplitudes; (h) Current-to-time (I-t) curves of the device in different conductive states at the read voltage of 0.2 V; Colorful figures are available on website
图3 多电导态测试及生物突触模拟
Fig. 3 Multiconductivity testing and biological synaptic simulation (a) Multi-current levels after operating the Ag/FeOx/ITO memristor to different conductance states under a reading voltage of 0.2 V with precision exceeding 4 bits for the FeOx-based memristor; (b) PPF pulse test schematic; (c) PPF pulse test results; (d) PPF versus interval of Ag/FeOx/ITO memristor
图4 Ag/FeOx/ITO忆阻器物理机制拟合结果
Fig. 4 Results of fitting the physical mechanism of Ag/FeOx/ITO memristors (a) Using the Fowler-Nordheim tunneling mechanism; (b) Using the Schottky emission tunneling mechanism; (c) Using the Ohmic current mechanism; (d) Using the Frenkel-Poole tunneling mechanism
图5 基于陷阱能级隧穿构建的物理模型
Fig. 5 Physical model constructed based on trap energy level tunneling (a) Electrons are injected from Ag electrode and filled with defect energy levels in FeOx; (b) Defect energy level in FeOx is filled and the device is converted to LRS; (c) Reverse voltage, electrons are injected from the ITO electrode and filled with defect energy levels; (d) Defect energy level is filled and the device transitions to LRS again
[1] |
YAO P, WU H, GAO B, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577(7792):641.
DOI |
[2] | ZHOU G, REN Z, WANG L, et al. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device. Nano Energy, 2019, 63: 103793. |
[3] |
SUN B, WEI L, LI H, et al. White-light-controlled ferromagnetic and ferroelectric properties of multiferroic single-crystalline BiFeO3 nanoflowers at room temperature. J. Mater. Chem. C, 2014, 2(36):7547.
DOI URL |
[4] |
ZHOU G, REN Z, WANG L, et al. Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater. Horiz., 2019, 6(9): 1877.
DOI URL |
[5] | XU W, MIN S, HWANG H, et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv., 2016, 2(6):1501350. |
[6] |
GAO B, BI Y, CHEN H, et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano, 2014, 8(7):6998.
DOI PMID |
[7] |
DU C, MA W, CHANG T, et al. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater., 2015, 25(27):4290.
DOI URL |
[8] |
YANG J, STRUKOV D, STEWART D, et al. Memristive devices for computing. Nat. Nanotechnol., 2013, 8(1):13.
DOI PMID |
[9] |
CHANG T, YANG Y, LU W. Building neuromorphic circuits with memristive devices. IEEE Circ. Syst. Mag., 2013, 13(2):56.
DOI URL |
[10] |
KUZUM D, YU S, WONG H. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24(38):382001.
DOI URL |
[11] |
BORGHETTI J, SNIDER G, KUEKES P, et al. Memristive switches enable stateful logic operations via material implication. Nature, 2010, 464(7290):873.
DOI |
[12] |
HE H K, YANG R, XIA J, et al. High-uniformity memristor arrays based on two-dimensional MoTe2 for neuromorphic computing. Journal of Inorganic Materials, 2022, 37(7):795.
DOI URL |
[13] | TIAN Y, ZHU X J, SUN C, et al. Intrinsically stretchable threshold switching memristor for artificial neuron implementations. Journal of Inorganic Materials, 2023, 38(4):413. |
[14] |
ZHOU F, ZHOU Z, CHEN J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol., 2019, 14(8):776.
DOI PMID |
[15] |
JIANG J, HU W, XIE D, et al. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 2019, 11(3):1360.
DOI PMID |
[16] |
DUAN Q, JING Z, ZOU X, et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. Nat. Commun., 2020, 11(1):3399.
DOI PMID |
[17] |
孙军伟, 杨建领, 刘鹏, 等. 基于双曲函数的通用型荷控忆阻器电路等效模型分析. 电子与信息学报, DOI: 10.11999/JEIT211317.
DOI |
[18] | 陈显峰, 涂雅婷, 周广东, 等. 不同氛围溅射HfO2栅介质薄膜的电学性能和界面微结构. 中国科学(物理学力学天文学), 2011, 41(3):243. |
[19] |
LU J, LI Y, XUAN Z, et al. One transistor one electrolyte-gated transistor for supervised learning in SNNs. IEEE Electron Device Letters, 2021, 43(2):296.
DOI URL |
[20] |
ZHONG Y, TANG J, LI X, et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun., 2021, 12(1):408.
DOI PMID |
[21] | SUN L, WANG Z, JIANG J, et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv., 2021, 7(20):eabg14565. |
[22] |
PAN C, WANG C, LIANG S, et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron., 2020, 3(7):383.
DOI |
[23] |
CHEN H, XUE X, LIU C, et al. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron., 2021, 4(6):399.
DOI |
[24] |
WANG W, ZHOU G, WANG Y, et al. An analogue memristor made of silk fibroin polymer. J. Mater. Chem. C, 2021, 9(41):14583.
DOI URL |
[25] |
HE N, SUN Y, WEN D, et al. Synaptic behavior of Ni-Co layered double hydroxide-based memristor. Appl. Phys. Lett., 2021, 118(17):173503.
DOI URL |
[26] |
WANG Z, XU H, LI X, et al. Synaptic learning and memoryfunctions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater., 2012, 22(13):2759.
DOI URL |
[27] |
ZHANG L, TAO H, HOLT C, et al. A critical window for cooperation and competition among developing retinotectal synapses. Nature, 1998, 395(6697):37.
DOI |
[28] |
ALIBART F, GAO L, HOSKINS B, et al. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 2012, 23(7):075201.
DOI URL |
[29] |
YU S, WU Y, JEYASINGH R, et al. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices, 2011, 58(8):2729.
DOI URL |
[30] |
WANG W, ZHOU G, WANG Y, et al. Multiphotoconductance levels of the organic semiconductor of polyimide-based memristor induced by interface charges. J. Phys. Chem. Lett., 2022, 13(42):9941.
DOI PMID |
[31] |
YAN B, KUANG D, WANG W, et al. Investigation of multi-photoconductance state induced by light-sensitive defect in TiOx-based memristor. Appl. Phys. Lett., 2022, 120(25):253506.
DOI URL |
[32] |
ZHOU G, SUN B, HU X, et al. Negative photoconductance effect: an extension function of the TiOx-based memristor. Adv. Sci., 2021, 8(13):2003765.
DOI URL |
[33] |
HU X, WANG W, SUN B, et al. Refining the negative differential resistance effect in a TiOx-based memristor. J. Phys. Chem. Lett., 2021, 12(22):5377.
DOI URL |
[34] |
ZHOU G, DUAN S, LI P, et al. Coexistence of negative differential resistance and resistive switching memory at room temperature in TiOx modulated by moisture. Adv. Electron. Mater., 2018, 4(4):1700567.
DOI URL |
[35] |
ZHOU G, WANG Z, SUN B, et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater., 2022, 8(7):2101127.
DOI URL |
[36] |
ZHOU G, JI X, LI J, et al. Second-order associative memory circuit hardware implemented by the evolution from battery-like capacitance to resistive switching memory. iScience, 2022, 25(10):105240.
DOI URL |
[37] | SUN B, ZHOU G, GUO T, et al. Biomemristors as the next generation bioelectronics. Nano Energy, 2020, 75: 104938. |
[38] |
ZHOU G, YANG X, XIAO L, et al. Investigation of a submerging redox behavior in Fe2O3 solid electrolyte for resistive switching memory. Appl. Phys. Lett., 2019, 114(16):163506.
DOI URL |
[39] |
ZHOU G, SUN B, YAO Y, et al. Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires. Appl. Phys. Lett., 2016, 109(14):143904.
DOI URL |
[40] |
LIN P, LI C, WANG Z, et al. Three-dimensional memristor circuits as complex neural networks. Nat. Electron., 2020, 3(4):225.
DOI |
[41] |
WANG Z, WU H, BURR G, et al. Resistive switching materials for information processing. Nat. Rev. Mater., 2020, 5(3):173.
DOI |
[42] |
LIAO C, HU X, LIU X, et al. Self-selective analogue FeOx-based memristor induced by the electron transport in the defect energy level. Appl. Phys. Lett., 2022, 121(12):123505.
DOI URL |
[43] |
YAN B, KUANG D, WANG W, et al. Investigation of multi-photoconductance state induced by light-sensitive defect in TiO x-based memristor. Appl. Phys. Lett., 2022, 120(25):253506.
DOI URL |
[44] |
HU S G, LIU Y, CHEN T P, et al. Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl. Phys. Lett., 2013, 103(13):133701.
DOI URL |
[45] |
CHIOU Y, GAMBINO J, MOHAMMAD M. Determination of the Fowler-nordheim tunneling parameters from the Fowler-nordheim plot. Solid-State Electron., 2001, 45(10):1787.
DOI URL |
[46] |
BARTH S, WOLF U, BÄSSLER H, et al. Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation. Phys. Rev. B, 1999, 60(12):8791.
DOI URL |
[47] |
LANDAUER R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1957, 1(3):223.
DOI URL |
[48] | SZE S. Physics of Semiconductor Devices. 2nd ed.Section 7.3.4 Wiley, New York. 1981. |
[1] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[2] | 田雨, 朱小健, 孙翠, 叶晓羽, 刘慧媛, 李润伟. 本征可拉伸阈值型忆阻器及其神经元仿生特性[J]. 无机材料学报, 2023, 38(4): 413-420. |
[3] | 诸葛霞, 朱仁祥, 王建民, 王敬蕊, 诸葛飞. 面向类脑计算的氧化物忆阻器[J]. 无机材料学报, 2023, 38(10): 1149-1162. |
[4] | 何慧凯, 杨蕊, 夏剑, 王廷泽, 董德泉, 缪向水. 高均一性二维碲化钼忆阻器阵列及其神经形态计算应用[J]. 无机材料学报, 2022, 37(7): 795-801. |
[5] | 李创, 杨庆峰, 陆盛森, 刘阳桥. La/FeOOH@PAC对反渗透浓缩液中有机膦酸盐阻垢剂HEDP的吸附性能研究[J]. 无机材料学报, 2021, 36(8): 841-846. |
[6] | 杨 超, 李 莹, 闫 璐, 曹韫真. 原子层沉积工艺制备催化薄膜厚度对生长碳纳米管阵列的影响[J]. 无机材料学报, 2016, 31(7): 681-686. |
[7] | 潘国祥, 陈 健, 倪哲明, 曹 枫, 胡双双, 林 凯, 李金花, 竺增林. 包覆型氧化铁黄颜料微结构与耐热性能研究[J]. 无机材料学报, 2016, 31(1): 75-80. |
[8] | 王 军, 张宝林, 杨 高, 王 磊, 谢松伯, 李 璇, 郜发宝. 磁性氧化铁高效磁共振造影剂的制备及应用[J]. 无机材料学报, 2015, 30(1): 53-58. |
[9] | 薛红涛,沈水发,潘海波,谢长淮. 介孔氧化铁的制备与表征[J]. 无机材料学报, 2009, 24(3): 577-580. |
[10] | 钭启升,张辉,邬剑波,杨德仁. 氧化铁和羟基氧化铁纳米结构的水热法制备及其表征[J]. 无机材料学报, 2007, 22(2): 213-218. |
[11] | 杨玉东,梁勇,宋志霞,线全刚. 葡聚糖中超顺磁氧化铁复合纳米粒子制备影响因素及表征[J]. 无机材料学报, 2005, 20(1): 225-229. |
[12] | 董睿,姜继森,杨燮龙. 非水介质中制备纳米氧化铁[J]. 无机材料学报, 2002, 17(5): 967-972. |
[13] | 朱以华,吴秋芳,李春忠. 流态化CVD包硅的Fe3O4的氧化行为[J]. 无机材料学报, 2000, 15(1): 26-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||