无机材料学报 ›› 2022, Vol. 37 ›› Issue (3): 338-346.DOI: 10.15541/jim20210606 CSTR: 32189.14.10.15541/jim20210606
所属专题: 【制备方法】3D打印(202409)
周红莉1(), 蔡志勇1, 王小锋1(
), 曾婧2, 冯艳1, 彭超群1, 王日初1
收稿日期:
2021-10-02
修回日期:
2021-12-02
出版日期:
2022-03-20
网络出版日期:
2021-12-24
通讯作者:
王小锋, 副教授. E-mail: wangxiaofeng@csu.edu.cn
作者简介:
周红莉(1996-), 女, 硕士研究生. E-mail: summertimezhl@163.com
ZHOU Hongli1(), CAI Zhiyong1, WANG Xiaofeng1(
), ZENG Jin2, FENG Yan1, PENG Chaoqun1, WANG Richu1
Received:
2021-10-02
Revised:
2021-12-02
Published:
2022-03-20
Online:
2021-12-24
Contact:
WANG Xiaofeng, associate professor. E-mail: wangxiaofeng@csu.edu.cn
About author:
ZHOU Hongli (1996-), female, Master candidate. E-mail: summertimezhl@163.com
Supported by:
摘要:
石膏是雕像、建筑和铸造模具(合金和陶瓷)的常用材料。采用直写成型(Direct Ink Writing, DIW)打印石膏可避免其他3D打印技术(如Binder Jetting, PBBJ等)中存在水化反应不充分等问题, 获得高强度3D打印石膏。为了延缓水化反应获得充足的打印操作时间, 本研究通过添加缓凝剂和增稠剂, 研制了一种适用于直写成型的石膏浆料, 并打印了多种石膏三维结构(如蜘蛛网和木材堆积结构等)。结果表明, 质量分数为0.6%柠檬酸(Citric Acid, CA)的缓凝效果最好, 极大地减少了石膏流动性的经时损失。质量分数为0.3%羟丙基甲基纤维素(Hydroxypropyl Methylcellulose, HPMC)的增稠效果最好, 使石膏浆料具有良好的打印性能。CA的选择性吸附使得石膏晶体定向生长, 延长水化反应时间, 但一定程度降低石膏强度。HPMC加速石膏浆料中絮凝结构形成, 导致其粘度和剪切弹性模量升高。直写成型3D石膏件的抗压强度约为20 MPa, 远高于PBBJ等方法制备的石膏件的抗压强度。
中图分类号:
周红莉, 蔡志勇, 王小锋, 曾婧, 冯艳, 彭超群, 王日初. 石膏的直写成型:可打印石膏浆料的研制[J]. 无机材料学报, 2022, 37(3): 338-346.
ZHOU Hongli, CAI Zhiyong, WANG Xiaofeng, ZENG Jin, FENG Yan, PENG Chaoqun, WANG Richu. Direct Ink Writing of Gypsum: Developing a Printable Gypsum Paste[J]. Journal of Inorganic Materials, 2022, 37(3): 338-346.
Fig. 1 Effect of retarders on gypsum paste (a) Setting time vs content of retarder; (b) Fluidity vs content of citric acid (CA) in the gypsum paste; (c) Shear elastic modulus vs shear stress; (d) Yield stress vs content of CA
Fig. 2 Effect of thickener on gypsum paste (a) Setting time vs content of thickeners; (b) Fluidity vs content of thickener; (c) Shear modulus of elasticity of HPMC with different dosage; (d) Yield stress vs content of HPMC
Fig. 3 Structures and microstructures of printed 3D gypsum (a, d) Scaffold structure with three horizontal lines and three vertical lines appearing alternately and periodically in the Z-axis, the cross angle is 60°; (b, e) Spider structure consisting of alternate layers of radial and circular rods; (c, f) Scaffold structure with three horizontal lines and three vertical lines appearing alternately and periodically in the Z-axis, the cross angle is 45°; (g-i) Microstructure of printed gypsum parts
Fig. 5 XRD patterns at different hydration time for gypsum pastes with different agents (a) 0.6% (in mass) citric acid gypsum at different hydration time; (b) 0.6% (in mass) citric acid and 0.3% (in mass) HPMC at different hydration time
Fig. 6 SEM images of gypsum at different hydration time (a-d) Gypsum with 0.6% (in mass) CA at different hydration time ((a) 5 min, (b) 12 min, (c) 20 min, (d) 300 min (final setting time)); (e-f) Gypsum with 0.6% (in mass) CA and 0.3% (in mass) HPMC at different hydration time ((e) 5 min, (f) 12 min, (g) 20 min, (h) 320 min (final setting time))
[1] |
ZHANG J X, ZHANG Y, LIU J K, et al. Research on the properties of high-strength gypsum based tile adhesive in interior decoration. E3S Web of Conferences, 2020, 165(5): 05015.
DOI URL |
[2] |
PHONGTHORN J, PANUWAT J. Utilization of several industrial wastes as raw material for calcium sulfoaluminate cement. Materials, 2019, 12(20): 3319-3331.
DOI URL |
[3] |
PHETRATTANARANGSI T, PUNCREOBUTR C, KHAMKONGKAEO A, et al. The behavior of gypsum-bonded investment in the gold jewelry casting process. Thermochimica Acta, 2017, 657: 144-150.
DOI URL |
[4] |
WEISE J, HILBERS J, HANDELS F, et al. New core technology for light metal casting. Advanced Engineering Materials, 2019, 21(4): 1800608.
DOI URL |
[5] |
MA CHANGLIANG, ZHANG YUE, ZHANG HUANYUE, et al. Manufacturing of herringbone gear model by 3D printing assisted investment casting. IOP Conference Series Earth and Environmental Science, 2019, 332(4): 042045.
DOI URL |
[6] | MA Y, TANG B, YAO Q M, et al. Common defects and their solutions in plaster investment precision casting. Special Casting, 2020, 41(7): 664-666. |
[7] | SHEN Y, ZHENG G, FENG C M. Research progress in investment casting precision casting technology. Precision Forming Engineering, 2019(01): 54-62. |
[8] |
HEAD D, VANORIO T. Effects of changes in rock microstructures on permeability: 3-D printing investigation. Geophysical Research Letters, 2016, 43(14): 7494-7502.
DOI URL |
[9] |
LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews, 2017, 117(15): 10212-10290.
DOI URL |
[10] |
AMBROSI A, PUMERA M. 3D-printing technologies for electrochemical applications. Chemical Society Reviews, 2016, 45(10): 2740-2755.
DOI URL |
[11] |
HISHAM H H, ARIFIN S S, AYA A, et al. 3D printable conductive materials for the fabrication of electrochemical sensors: a mini review. Electrochemistry Communications, 2018, 96: 27-31.
DOI URL |
[12] | CIMA M, LEXINGTON, SACHS E M, et al. Three-dimensional Printing Techniques. U.S., Patent, 5387380, 1995.2.7. |
[13] |
CASTILHO M, RODRIGUES J, PIRES I, et al. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication, 2015, 7(1): 15004-15023.
DOI URL |
[14] |
JARIWALA S H, LEWIS G S, BUSHMAN Z J, et al. 3D printing of personalized artificial bone scaffolds. 3D Printing and Additive Manufacturing, 2015, 2(2): 56-64.
DOI URL |
[15] |
SNYDER T J, ANDREWS M, WEISLOGEL M, et al. 3D systems' technology overview and new applications in manufacturing, engineering, science, and education. 3D Printing and Additive Manufacturing, 2014, 1(3): 169-176.
DOI URL |
[16] | LIU H B, MENG F J, HUA S Z. 4D mapping of the fracture evolution in a printed gypsum-like core by using X-ray CT scanning. Advances in Civil Engineering, 2021, 2021: 1-12. |
[17] |
SONG R, WANG Y, ISHUTOV S, et al. A comprehensive experimental study on mechanical behavior, microstructure and transport properties of 3D-printed rock analogs. Rock Mechanics and Rock Engineering, 2020, 53(12): 5745-5765.
DOI URL |
[18] |
JAVAN R, ELLENBOGEN A L, GREEK N, et al. A prototype assembled 3D-printed phantom of the glenohumeral joint for fluoroscopic-guided shoulder arthrography. Skeletal Radiology, 2019, 48(5): 791-802.
DOI URL |
[19] |
BUDA M, BRATOS M, SORENSEN J A. Accuracy of 3-dimensional computer-aided manufactured single-tooth implant definitive casts. Journal of Prosthetic Dentistry, 2018, 120(6): 913-918.
DOI URL |
[20] |
RODRÍGUEZ-GONZÁLEZ P, FERNÁNDEZ-ABIA A I, CASTRO- SASTRE M A, et al. Heat treatments for improved quality binder jetted molds for casting aluminum alloys. Additive Manufacturing, 2020, 36: 101524.
DOI URL |
[21] |
WU Z J, ZHANG B, WENG L, et al. A new way to replicate the highly stressed soft rock: 3D printing exploration. Rock Mechanics and Rock Engineering, 2020, 53(1): 467-476.
DOI URL |
[22] | ASADI-EYDIVAND M, SOLATI-HASHJIN M, SHAFIEI S S, et al. Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing. PLOS ONE, 2016, 11(3): e151216. |
[23] |
SELVARAJ S B, SINGAMNENI S. Pre-moisturized β-hemihydrate for 3d printed molds. Materials and Manufacturing Processes, 2015, 31(8): 1102-1112.
DOI URL |
[24] |
SHAHARIAR H, KIM I, BHAKTA R, et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters. Smart Materials and Structures, 2020, 29(8): 085018.
DOI URL |
[25] |
FIOCCO L, ELSAYED H, BADOCCO D, et al. Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers. Biofabrication, 2017, 9(2): 025012.
DOI URL |
[26] |
LIU C B, GAO J M, TANG Y B, et al. Preparation and characterization of gypsum-based materials used for 3D robocasting. Journal of Materials Science, 2018, 53(24): 16415-16422.
DOI URL |
[27] |
ZHANG Y Y, YANG J S, CAO X Y. Effects of several retarders on setting time and strength of building gypsum. Construction and Building Materials, 2020, 240: 117927.
DOI URL |
[28] |
HILL J, PLANK J. Retardation of setting of plaster of paris by organic acids: understanding the mechanism through molecular modeling. Journal of Computational Chemistry, 2004, 25(12): 1438-1448.
DOI URL |
[29] |
GENSOWSKI K, TEPNER S, SCHWEIGERT S, et al. Conductive highly filled suspensions for an electrochemical dispensing approach to pattern full-area thin metal layers by physical vapour deposition. Scientific Reports, 2020, 10(1): 27-31.
DOI URL |
[30] |
HOWARD A BARNES. The yield stress—a review or ‘παντα ρει’—everything flows? Journal of Non-Newtonian Fluid Mechanics, 1999, 81(1): 133-178.
DOI URL |
[31] |
LIU C B, GAO J M, CHEN X M, et al. Effect of polysaccharides on setting and rheological behavior of gypsum-based materials. Construction and Building Materials, 2021, 267: 120922.
DOI URL |
[32] |
CAMARINI G, PINTO M C C, MOURA A G D, et al. Effect of citric acid on properties of recycled gypsum plaster to building components. Construction and Building Materials, 2016, 124: 383-390.
DOI URL |
[33] |
LIU C B, GAO J M, TANG Y B, et al. Early hydration and microstructure of gypsum plaster revealed by environment scanning electron microscope. Materials Letters, 2019, 234: 49-52.
DOI URL |
[34] |
SINGH M, GARG M. Retarding action of various chemicals on setting and hardening characteristics of gypsum plaster at different pH. Cement and Concrete Research, 1997, 27(6): 947-950.
DOI URL |
[35] | QU J D, LI B Z, PENG J H. Influence of retarders on the microstructure of hardened building gypsum paste and the mechanism of its strength loss. Advanced Materials Research, 2011, 250(253): 313-320. |
[36] |
BÜLICHEN D, PLANK J. Water retention capacity and working mechanism of methyl hydroxypropyl cellulose (MHPC) in gypsum plaster-which impact has sulfate? Cement and Concrete Research, 2013, 46: 66-72.
DOI URL |
[37] | THOMPSON B R, HOROZOV T S, STOYANOV S D, et al. Hierarchically porous composites fabricated by hydrogel templating and viscous trapping techniques. Materials & Design, 2018, 137: 384-393. |
[38] | MENG X L, WANG Q Q, WANG Y L. Effect of retarder on properties of FGD gypsum. Shandong Chemical Industry, 2019, 49(4): 17-18. |
[39] |
MAGALLANES-RIVERA R X, ESCALANTE-GARCÍA J I, GOROKHOVSKY A. Hydration reactions and microstructural characteristics of hemihydrate with citric and malic acid. Construction and Building Materials, 2009, 23(3): 1298-1305.
DOI URL |
[40] |
LANZÓN M, GARCÍA-RUIZ P A. Effect of citric acid on setting inhibition and mechanical properties of gypsum building plasters. Construction and Building Materials, 2012, 28(1): 506-511.
DOI URL |
[1] | 周港怀, 刘耀, 石原, 刘绍军. 活性氧化铝催化剂载体的光固化浆料制备与成型[J]. 无机材料学报, 2022, 37(3): 297-302. |
[2] | 付云飞, 朱伯铨, 李享成, 陈平安. 含镁铝尖晶石的铝酸钙水泥的合成与流变特性[J]. 无机材料学报, 2017, 32(8): 884-890. |
[3] | 谢雨洲, 彭超群, 王小锋, 王日初, 罗 丰. HEMA-TBA凝胶体系制备多孔氧化铝陶瓷[J]. 无机材料学报, 2017, 32(7): 731-738. |
[4] | 鲁 元, 李京龙, 杨建锋, 李 鹏. 热处理温度对双连续β-氮化硅增强铝基复合材料性能的影响[J]. 无机材料学报, 2015, 30(3): 277-281. |
[5] | 王小锋, 孙月花, 彭超群, 王日初, 张 斗, 马 超. 直写成型用悬浮液的设计[J]. 无机材料学报, 2015, 30(11): 1139-1147. |
[6] | 舒 夏, 李 军, 张海龙, 董满江, 岛井骏臧, 王士维. 水溶性共聚物为交联剂的凝胶注成型AlN陶瓷的研究[J]. 无机材料学报, 2014, 29(3): 327-330. |
[7] | 罗真兰, 王海波, 苏俭生. 镍与绿茶EGCG对舌鳞癌细胞毒性的影响[J]. 无机材料学报, 2012, 27(2): 179-184. |
[8] | 蔡坤鹏, 李亚运, 孙振新, 孙竞博, 李 勃, 周 济. 三维TiO2陶瓷网络的直写无模成型及结构设计对其光催化性能的调制作用[J]. 无机材料学报, 2012, 27(1): 102-106. |
[9] | 孙竞博, 李 勃, 蔡坤鹏, 周济, 李龙土. 利用浆料直写无模成型技术制备自支撑 TiO2 光降解器件[J]. 无机材料学报, 2011, 26(3): 300-304. |
[10] | 肖 奇, 高 兰, 张 响. 高可见光响应型单斜介孔BiVO4的合成与表征[J]. 无机材料学报, 2011, 26(12): 1256-1260. |
[11] | 孙竞博,李 勃,黄学光,蔡坤鹏,周 济,李龙土. 基于光敏浆料的直写精细无模三维成型[J]. 无机材料学报, 2009, 24(6): 1147-1150. |
[12] | 高 兰,马会茹,刘秧生,官建国. 硫酸改性TiO2粒子的表征与电流变性能研究[J]. 无机材料学报, 2009, 24(6): 1121-1124. |
[13] | 吴 昊,桑绍柏,李 炜,蒲 健,李 箭. 流延法制备SOFC阳极支撑体基片[J]. 无机材料学报, 2008, 23(1): 82-86. |
[14] | 汤枫秋,黄校先,张玉峰,郭景坤. 盐离子对纳米氧化锆浆料流变性能的影响[J]. 无机材料学报, 1999, 14(2): 239-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||