| [1] |
NAKAMURA S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science, 1998, 281(5379): 956-961.
DOI
URL
|
| [2] |
HAITZ R, TSAO J Y. Solid-state lighting: 'the case' 10 years after and future prospects. Physica Status Solidi (A) Applications and Materials Science, 2011, 208(1): 17-29.
|
| [3] |
PIMPUTKAR S, SPECK J S, DENBAARS S P, et al. Prospects for LED lighting. Nature Photonics, 2009, 3(4): 179-181.
DOI
URL
|
| [4] |
LING J, ZHOU Y, XU W, et al. Red-emitting YAG:Ce,Mn transparent ceramics for warm WLEDs application. Journal of Advanced Ceramics, 2020, 9(1): 45-54.
DOI
URL
|
| [5] |
WIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser & Photonics Reviews, 2013, 7(6): 963-993.
|
| [6] |
CANTORE M, PFAFF N, FARRELL R M, et al. High luminous flux from single crystal phosphor-converted laser-based white lighting system. Optics Express, 2016, 24(2): 215-221.
DOI
PMID
|
| [7] |
LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting. Laser & Photonics Reviews, 2018, 12(12): 173-202.
|
| [8] |
DING H, HU P, LIU Y F, et al. Recent progress of LuAG:Ce3+ for white laser diode lighting application. Chinese Journal of Luminescence, 2021, 42(10): 1531-1548.
DOI
URL
|
| [9] |
KURITZKY L Y, Speck J S. Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN. MRS Communications, 2015, 5(3): 463-473.
DOI
URL
|
| [10] |
PENG X L, LI S X, LIU Z H, et al. Phosphor ceramics for high-power solid-state lighting. Journal of Inorganic Materials, 2021, 36(8): 807-819.
DOI
|
| [11] |
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications. Chemical Society Reviews, 2017, 46(1): 275-299.
DOI
URL
|
| [12] |
DU A C, DU Q Y, LIU X, et al. Ce:YAG transparent ceramics enabling high luminous efficacy for high-power LEDs/LDs. Journal of Inorganic Materials, 2021, 36(8): 883-892.
DOI
|
| [13] |
ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass. Laser & Photonics Reviews, 2014, 8(1): 158-164.
|
| [14] |
SOMMER C, HARTMANN P, PACHLER P, et al. A detailed study on the requirements for angular homogeneity of phosphor converted high power white LED light sources. Optical Materials, 2009, 31(6): 837-848.
DOI
URL
|
| [15] |
SONG Y H, JI E K, JEONG B W, et al. Design of laser-driven high-efficiency Al2O3/YAG:Ce3+ ceramic converter for automotive lighting: fabrication, luminous emittance, and tunable color space. Dyes and Pigments, 2017, 139: 688-692.
DOI
URL
|
| [16] |
COZZAN C, LHEUREUX G, O'DEA N, et al. Stable, heat-conducting phosphor composites for high-power laser lighting. ACS Applied Materials & Interfaces, 2018, 10(6): 5673-5681.
|
| [17] |
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG:Ce-Al2O3 color converters enabling high-brightness laser- driven solid-state lighting in a transmissive configuration. Journal of Materials Chemistry C, 2019, 7(13): 3901-3908.
DOI
URL
|
| [18] |
PADTURE N P, KLEMENS P G. Low thermal conductivity in garnets. Journal of the American Ceramic Society, 1997, 80(4): 1018-1020.
DOI
URL
|
| [19] |
KLEIN P H, CROFT W J. Thermal conductivity diffusivity and expansion of Y2O3, Y3Al5O12 and LaF3 in the range 77-300 K. Journal of Applied Physics, 1967, 38(4): 1603-1607.
DOI
URL
|
| [20] |
BERMAN R, FOSTER E L, ZIMAN J M. Thermal conduction in artificial sapphire crystals at low temperatures. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1955, 231(1184): 130-144.
|
| [21] |
GUPTA T K, VALENTICH J. Thermal expansion of yttrium aluminum garnet. Journal of the American Ceramic Society, 1971, 54(7): 355-356.
DOI
URL
|
| [22] |
CAI P Z, GREEN D J, MESSING G L. Constrained densification of alumina/zirconia hybrid laminates experimental observations of processing defects. Journal of the American Ceramic Society, 1997, 80(8): 1929-1939.
DOI
URL
|
| [23] |
LI S X, ZHU Q Q, TANG D M, et al. Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting. Journal of Materials Chemistry C, 2016, 4(37): 8648-8654.
DOI
URL
|
| [24] |
LIU Z H, LI S X, HUANG Y H, et al. Composite ceramic with high saturation input powder in solid-state laser lighting: microstructure, properties, and luminous emittances. Ceramics International, 2018, 44(16): 20232-20238.
DOI
URL
|
| [25] |
XU M, CHANG J, WANG J, et al. Al2O3-YAG:Ce composite ceramics for high-brightness lighting. Optics Express, 2019, 27(2): 872-885.
DOI
URL
|
| [26] |
LIU X, QIAN X, ZHENG P, et al. Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices. Journal of Advanced Ceramics, 2021, 10(4): 729-740.
DOI
URL
|
| [27] |
MA X, LI X, LI J, et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics. Nature Communications, 2018, 9: 1175.
DOI
PMID
|
| [28] |
ZHAO H, LI Z, ZHANG M, et al. High-performance Al2O3-YAG:Ce composite ceramic phosphors for miniaturization of high-brightness white light-emitting diodes. Ceramics International, 2020, 46(1): 653-662.
DOI
URL
|
| [29] |
UEDA J, TANABE S, NAKANISHI T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. Journal of Applied Physics, 2011, 110(5): 053102.
DOI
URL
|
| [30] |
ZHENG P, DING G Z, XIE R J. Research progress on optical quenching of Ce3+- and Eu2+-doped luminescent materials. Chinese Journal of Luminescence, 2021, 42(10): 1447-1457.
DOI
URL
|