[1] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004, 104(10): 4245–4269.
[2] Zhang Y, Feng H, Wu X B, et al. Progress of electrochemical capacitor electrode materials: a review. International Journal of Hydrogen Energy, 2009, 34(11): 4889–4899.
[3] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828.
[4] Frackowiak E, Delpeux S, Jurewicz K, et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters 2002, 361(1/2): 35–41.
[5] Burke A, Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 2000, 91(1): 37–50.
[6] Nohara S, Asahina T, Wada H, et al. Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte. Journal of Power Sources, 2006, 1579(1): 605–609.
[7] Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters, 2006, 12(6): 2690–2695.
[8] Gupta V, Kusahara T, Toyama H, et al. Potentiostatically deposited nanostructured a-Co(OH)2:A high performance electrode material for redox-capacitors. Electrochemistry Communications, 2007, 9(9): 2315–2319.
[9] Ahn H J, Kima W B, Seong T Y. Co(OH)2-combined carbon-nanotube array electrodes for high-performance micro- electro-chemical capacitors. Electrochemistry Communications, 2008, 10(9): 1284–1287.
[10] Hu Z A, Xie Y L, Wang Y X, et al. Synthesis of α-cobalt hydroxides with different intercalated anions and effects of intercalated anions on their morphology, basal plane spacing, and capacitive property. The Journal of Physical Chemistry C, 2009, 113(28): 12502–12508.
[11] Liang Y Y, Cao L, Kong L B, et al. Synthesis of Co(OH)2/USY composite and its application for electrochemical supercapacitors. Journal of Power Sources, 2004, 136(1): 197–200.
[12] Ni X M, Zheng H G, Xiao X K, et al. Citrate-assisted fab rication of ?owery α-Co(OH)2 architectures with improved electrochemical properties. Journal of Alloys and Compounds, 2009, 484(1/2): 467–471.
[13] Qiao Y, Wang Y J, Yang Z Y, et al. Self-templating of metal-driven supramolecular self-assembly:a general approach toward 1D inorganic nanotubes. Chemistry of Materials, 2011, 23(5): 1182–1187.
[14] LIU Ai-Dong. Synthesis of nanomaterials in the control of biotemplate. Journal of Yunnan University, 2005, 27(3A): 109–194.
[15] Liu Z, Ma R, Osada M, et al. Selective and controlled synthesis of α and β-cobalt hydroxides in highly developed hexagonal platelets. Journal of the American Chemical Society, 2005, 127(40): 13869–13874.
[16] Qiao Y, Lin Y Y, Yang Z Y, et al. Unique temperature-dependent supramolecular self-assembly: from hierarchical 1D nanostructures to super hydrogel. The Journal of Physical Chemistry B, 2010, 114(36): 11725–11730.
[17] Miki K, Masui A, Kasai N, et al. New channel-type inclusion compound of steroidal bile acid. structure of a 1:1 complex between cholic acid and acetophenone. Journal of the American Chemical Society, 1988, 110(19): 6594–6596.
[18] Qiao Y, Lin Y Y, Wang Y J, et al. Metal-driven hierarchical self-assembled one-dimensional nanohelices. Nano Letters, 2009, 9(12): 4500–4504.
[19] ZHANG Luo-Jiang, GAO Bo, ZHANG Xiao-Gang. Pyrolysis preparation of nickel oxide and its electrochemical capacitance. Journal of Inorganic Materials, 2012, 28(5): 979–982.
[20] Palmas S, Ferrara F, Vacca A, et al. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochimica Acta, 2007, 53(2): 400–406. |