无机材料学报

• • 上一篇    下一篇

氮气调控微弧氧化:锆合金涂层的致密化与耐蚀性

纪若男1, 魏大庆1, 王庆宇1, 李永昶1, 张田1, 杜青2   

  1. 1.哈尔滨工程大学 核科学与技术学院,哈尔滨 150001;
    2.哈尔滨理工大学 建筑工程学院, 哈尔滨 150080
  • 收稿日期:2025-10-16 修回日期:2025-12-19
  • 通讯作者: 魏大庆, 教授. E-mail: daqingwei@hrbeu.edu.cn
  • 作者简介:纪若男(1994–), 女, 博士研究生, 讲师. E-mail: 1327952321@qq.com
  • 基金资助:
    基本科研业务费(2522050205A0015)

Nitrogen Modulation of Micro-arc Oxidation: Densification and Corrosion Resistance of Zirconium Alloy Coatings

JI Ruonan1, WEI Daqing1, WANG Qingyu1, LI Yongchang1, ZHANG Tian1, DU Qing2   

  1. 1. Harbin Engineering University, College of Nuclear Science and Technology, Harbin 150001, China;
    2. Harbin University of Science and Technology, School of Architecture and Civil Engineering, Harbin 150080, China
  • Received:2025-10-16 Revised:2025-12-19
  • Contact: WEI Daqing, professor. E-mail: daqingwei@hrbeu.edu.cn
  • About author:JI Ruonan (1994–), female, PhD candidate, lecturer. E-mail: 1327952321@qq.com
  • Supported by:
    Fundamental Research Funds for the Academy of Sciences (2522050205A0015)

摘要: 核用锆合金在反应堆失水事故工况下易发生剧烈的锆水反应,而传统微弧氧化(MAO)涂层因孔隙率高,难以提供足够保护。本研究在微弧氧化过程中创新性地引入氮气,利用氮气氛围抑制电弧集中,实现涂层结构优化与氮元素掺杂。实验结果表明,该方法成功制备出致密氧化锆涂层,其孔隙率显著降至4.96%(降幅62%),表面粗糙度降低,且与基体结合紧密、无明显裂纹;同步实现氮元素晶格固溶,并形成特征性Zr-O-N键合结构。得益于此微观结构与化学组成的协同优化,致密涂层在0.1 mol/L LiOH溶液中的腐蚀电流密度低至1.61 × 10-8 A·cm-2,较常规MAO涂层降低一个数量级。本研究证实,氮气氛围可同步实现结构调控与化学改性,为开发高性能事故容错锆合金包壳涂层提供了新途径。

关键词: 锆合金, 微弧氧化, 氮掺杂, 耐腐蚀性能

Abstract: Zirconium alloys used in nuclear reactors undergo severe zirconium-water reaction during loss-of-coolant accidents. Conventional micro-arc oxidation (MAO) coatings, limited by their high porosity, offer insufficient protection. In this study, nitrogen was innovatively introduced into the MAO process to suppress arc concentration, thereby achieving simultaneous structural optimization and nitrogen doping of the coating. Experimental results demonstratethe successful fabricationof a dense zirconium oxide coating through this approach. The porosity is significantly reduced to 4.96% (representing a 62% reduction), surface roughness is decreased, and a tight, crack-free bond with the substrate is achieved. Simultaneously, nitrogen is incorporated into the crystal lattice, forming a characteristic Zr-O-N bonding structure. Benefiting from this synergistic optimization of the microstructure and chemical composition, the dense coating exhibits a corrosion current density as low as 1.61 × 10-8 A·cm-2 in a 0.1 mol/L LiOH solution, which is one order of magnitude lower than that of a conventional MAO coating. This work confirms that a nitrogen atmosphere can simultaneously facilitate structural regulation and chemical modification, providing a new pathway for developing high-performance accident-tolerant zirconium alloy cladding coatings.

Key words: zirconium alloy, micro-arc oxidation, nitrogen doping, corrosion resistance

中图分类号: