无机材料学报

• •    

锆酸镧多孔隔热材料研究进展

陈坤, 姜勇刚, 冯军宗, 李良军, 胡艺洁, 冯坚   

  1. 国防科技大学 空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
  • 收稿日期:2025-09-19 修回日期:2025-11-03
  • 作者简介:陈 坤(1999-), 男, 博士研究生. E-mail: chenkun17@nudt.edu.cn
  • 基金资助:
    湖南省自然科学基金(2023JJ30632,2025JJ20045);国家重点研发计划(2022YFC2204403)

Research Progress on Lanthanum Zirconate Porous Materials for Thermal Insulation

CHEN Kun, JIANG YongGang, FENG Junzong, LI Liangjun, HU Yijie, FENG Jian   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China
  • Received:2025-09-19 Revised:2025-11-03
  • About author:CHEN Kun (1999-), male, PhD candidate. E-mail: chenkun17@nudt.edu.cn
  • Supported by:
    Hunan Provincial Natural Science Foundation of China (2023JJ30632, 2025JJ20045); National Key R&D Program of China (2022YFC2204403)

摘要: 锆酸镧多孔材料是一类以纳米或微米尺度锆酸镧颗粒为结构单元构成的高孔隙率材料,具有低热导率和熔点前不发生相变的优点,作为隔热材料在航空航天领域应用前景广阔。然而,因锆酸镧多孔材料受热后微纳结构单元易烧结,导致其孔结构塌陷,隔热和耐温性能下降。研究人员通过以模板法为主的工艺在微纳米尺度改变孔径尺寸,溶胶-凝胶法结合不同的干燥工艺调节纳米尺度粒径尺寸,实现了介观结构优化并有效降低热导率;采用单元素或多元素掺杂实现晶格畸变,减弱热力学扩散作用,抑制晶粒高温生长,两方面研究显著提升了锆酸镧多孔材料的隔热和耐温性能。本文介绍了锆酸镧的晶体结构、物相稳定和掺杂改性优势,综述了近年来国内外锆酸镧多孔隔热材料在介观结构优化和元素掺杂方面的研究进展,总结二者在降低热导率和提高耐温性能不同作用机制,并对未来研究方向进行了展望。

关键词: 多孔锆酸镧, 隔热材料, 结构调控, 元素掺杂

Abstract: Lanthanum zirconate porous material is a kind of high porosity material with nanoparticles or microparticles as the basic building unit. These materials exhibit exceptionally low thermal conductivity and maintain remarkable phase stability up to their melting point, making them particularly promising for thermal insulation applications in the aerospace industry. However, Lanthanum zirconate porous material’s sintering problems cause the collapse and shrinkage of pore structure, resulting in relatively poor thermal resistance and thermal insulation. Researchers have employed precise control over pore size and particle dimensions to optimize the mesostructure, leading to a significant reduction in thermal conductivity. Specifically, template-based methods enable precise control over pore size at the micro-nano scale, while Sol-Gel techniques combined with varied drying processes facilitate regulation of particle dimensions at the nanoscale. Concurrently, the introduction of single- or multi-element doping has proven effective in inducing controlled lattice distortion, which subsequently weakens thermodynamic diffusion processes and suppresses high-temperature grain growth. This dual strategy of morphological control and compositional engineering has substantially improved both the thermal insulation capability and temperature resistance of lanthanum zirconate porous materials. This review begins by introducing the crystal structure of lanthanum zirconate, highlighting its advantages in phase stability and doping capability. It then systematically surveys recent developments in fabrication technologies and modification strategies for lanthanum zirconate-based porous thermal insulation materials, with particular emphasis on advances in mesostructural optimization and elemental doping methodologies. A detailed analysis is provided on the distinct mechanisms through which these approaches suppress thermal conduction and enhance high-temperature stability. The review concludes by outlining promising avenues for future research.

Key words: lanthanum zirconate porous materials, thermal insulation materials, structural modulation, dope

中图分类号: