[1] MISCHENKO A, ZHANG Q, SCOTT J F,et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311(5765): 1270. [2] LU S G, LI D D, LIN X W,et al. Influence of electric field on the phenomenological coefficient and electrocaloric strength in ferroelectrics. Acta Physica Sinica, 2020, 69(12): 127701. [3] GSCHNEIDNER K A JR, PECHARSKY V K, TSOKOL A O. Recent developments in magnetocaloric materials.Reports on Progress in Physics, 2005, 68(6): 1479. [4] SCOTT J F.Applications of modern ferroelectrics.Science, 2007, 315(5814): 954. [5] TANG H, NIU X, YANG Z P,et al. Giant electrocaloric effect enhancement due to the polarization flip and influence of Mn4+ doping on the dielectric, ferroelectric properties in 0.7BiFeO3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2022, 71(14): 147701. [6] MAÑOSA L, PLANES A, ACET M. Advanced materials for solid-state refrigeration.Journal of Materials Chemistry A, 2013, 1(16): 4925. [7] BARMAN A, KAR-NARAYAN S, MUKHERJEE D.Caloric effects in perovskite oxides.Advanced Materials Interfaces, 2019, 6(15): 1900291. [8] CHEN J Y, LEI L P, FANG G.Elastocaloric cooling of shape memory alloys: a review.Materials Today Communications, 2021, 28: 102706. [9] ZHANG C, CEN F J, XIAO W R,et al. Electrocaloric effect of ferroelectric ceramic and its application. Journal of the Chinese Ceramic Society, 2022, 50(3): 642. [10] HU H L, ZHANG F, LUO S B, et al. Electrocaloric effect in relaxor ferroelectric polymer nanocomposites for solid-state cooling. Journal of Materials Chemistry A, 2020, 8(33): 16814. [11] MOYA X, KAR-NARAYAN S, MATHUR N D.Caloric materials near ferroic phase transitions.Nature materials, 2014, 13(5): 439. [12] GRÜNEBOHM A, MA Y B, MARATHE M,et al. Origins of the inverse electrocaloric effect. Energy Technology, 2018, 6(8): 1491. [13] HU Q Y, TIAN Y, ZHU Q S,et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy, 2020, 67: 104264. [14] VALASEK J.Piezo-electric and allied phenomena in rochelle salt.Rochelle Salt, 1921, 17(4): 475. [15] ZHANG L L, HUANG Y N.Theory of relaxor-ferroelectricity.Scientific Reports, 2020, 10(1): 5060. [16] MOYA X, STERN-TAULATS E, CROSSLEY S,et al. Giant electrocaloric strength in single-crystal BaTiO3. Advanced Materials, 2013, 25(9): 1360. [17] ZHANG Y, ZHANG J, ZHANG N,et al. Hierarchical compositional ordering in lead-based perovskite relaxors. Physical Review B, 2023, 107(5): 054101. [18] JAFFE B, COOK W R JR, JAFFE H. Piezoelectric Ceramics. New York and London: Academic Press, 1971: ix+317. [19] CHOI S W, SHROUT R T R, JANG S J,et al. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics, 1989, 100: 29. [20] WU H H, COHEN R E.Electric-field-induced phase transition and electrocaloric effect in PMN-PT.Physical Review B, 2017, 96(5): 054116. [21] VRABELJ M, URŠIČ H, KUTNJAK Z,et al. Large electrocaloric effect in grain-size-engineered 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3. Journal of the European Ceramic Society, 2016, 36(1): 75. [22] BRADEŠKO A, VRABELJ M, FULANOVIĆ L,et al. Implications of acceptor doping in the polarization and electrocaloric response of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor ferroelectric ceramics. Journal of Materials Chemistry C, 2021, 9(9): 3204. [23] SUN E W, CAO W W.Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.Progress in Materials Science, 2014, 65: 124. [24] HO J C, LIU K S, LIN I N.Study of ferroelectricity in the PMN-PT system near the morphotropic phase boundary.Journal of Materials Science, 1993, 28(16): 4497. [25] SUH D H, LEE D H, KIM N K.Phase developments and dielectric/ferroelectric responses in the PMN-PT system.Journal of the European Ceramic Society, 2002, 22(2): 219. [26] SHVARTSMAN V V, LUPASCU D C.Lead-free relaxor ferroelectrics.Journal of the American Ceramic Society, 2012, 95(1): 1. [27] VIEHLAND D, JANG S J, CROSS L E,et al. Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Physical Review B, 1992, 46(13): 8003. [28] BOKOV A A, YE Z G.Phenomenological description of dielectric permittivity peak in relaxor ferroelectrics.Solid State Communications, 2000, 116(2): 105. [29] MACKEVICIUTE R, GRIGALAITIS R, BANYS J,et al. Electrical properties of PMN-33PT thin film at MPB. Ferroelectrics, 2017, 512(1): 1. [30] HAN F X, QIN Y L, ZHANG Y C,et al. Domain configuration and domain switching in Dy-doped 0.72PMN-0.28PT piezoceramics with high d33 coefficient. Ceramics International, 2022, 48(16): 23061. [31] LIU G, YU W Z, WANG Y,et al. Electrocaloric effect of (Ba1-xSrx)(HfxTi1-x)O3 lead-free ferroelectric ceramics with phase structure regulation. Ceramics International, 2023, 49(22): 34387. [32] SMIRNOVA E, SOTNIKOVA G, SOTNIKOV A,et al. Peculiarities of the electrocaloric effect in relaxors. Journal of Materiomics, 2023, 9(1): 223. [33] LI J J, YIN R W, LI J T,et al. Correlation between multi-factor phase diagrams and complex electrocaloric behaviors in PNZST antiferroelectric ceramic system. Journal of Advanced Ceramics, 2023, 12(3): 463. [34] CHENG L Q, YAN Y K, LI X T,et al. Electrocaloric performance of multilayer ceramic chips: effect of geometric structure induced internal stress. ACS Applied Materials & Interfaces, 2021, 13(32): 38508. [35] GE P Z, JIAN X D, LIN X G,et al. Composition dependence of giant electrocaloric effect in PbxSr1-xTiO3 ceramics for energy-related applications. Journal of Materiomics, 2019, 5(1): 118. [36] KRUPSKA-KLIMCZAK M, FATHABAD S M, KAJEWSKI D, et al. Dielectric, piezoelectric, ferroelectric, and electrocaloric properties of Ba, Sr-doped PZT. Ceramics International, 2025: in press doi.org/10.1016/j.ceramint.2025.1002.1139. [37] MENSUR-ALKOY E, OKATAN BARIS M, AYDIN E, et al. Effect of texture on the electrical and electrocaloric properties of 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 relaxor ceramics. Journal of Applied Physics, 2020, 128(8): 084102. [38] URŠIČ H, PRAH U, ROJAC T,et al. High radiation tolerance of electrocaloric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3. Journal of the European Ceramic Society, 2022, 42(13): 5575. [39] SARKAR A, ŠADL M, JAZBEC A,et al. Influence of neutron and gamma irradiation on the electrocaloric properties of Mn-doped 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 ceramics. Journal of Physics: Energy, 2023, 5(4): 045006. [40] CHENG L Q, MA Z H, LU J T,et al. Grain-orientation-engineered PMN-10PT ceramics for electrocaloric applications. Journal of the American Ceramic Society, 2022, 106(2): 1194. [41] LI J H, LIN J X, LI F,et al. Temperature-insensitive large electrocaloric effect near room temperature in La3+-doped lead magnesium niobate-lead titanate ceramics. Ceramics International, 2020, 46(6): 8391. |