[1] QIAO J L, LIU Y Y, HONG F, et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 2014, 43(2): 631. [2] XU R J, LIU S, YANG M T, et al.Advancements and prospects of perovskite-based fuel electrodes in solid oxide cells for CO2 electrolysis to CO. Chemical Science, 2024, 15(29): 11166. [3] EBBESEN S D, MOGENSEN M.Electrolysis of carbon dioxide in solid oxide electrolysis cells. Journal of Power Sources, 2009, 193(1): 349. [4] DU Y Q, LING H, ZHAO L Y, et al.The development of solid oxide electrolysis cells: critical materials, technologies and prospects. Journal of Power Sources, 2024, 607: 234608. [5] KEANE M, FAN H, HAN M F, et al.Role of initial microstructure on nickel-YSZ cathode degradation in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2014, 39(33): 18718. [6] PECHO O, MAI A, MUNCH B, et al.3D microstructure effects in Ni-YSZ anodes: influence of TPB lengths on the electrochemical performance. Materials, 2015, 8(10): 7129. [7] HAUNCH A, KUNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis. Science, 2020, 370(6513): eaba6118. [8] FU C J, MA Q, GAO L M, et al.Recent advances in perovskite oxides electrocatalysts: ordered perovskites, cations segregation and exsolution. ChemCatChem, 2023, 15(11): e202300389. [9] LEI Y R, WANG Z, BAO A, et al.Recent advances on electrocatalytic CO2 reduction to resources: target products, reaction pathways and typical catalysts. Chemical Engineering Journal, 2023, 453: 139663. [10] MA Q L, TIETZ F.Comparison of Y and La-substituted SrTiO3 as the anode materials for SOFCs. Solid State Ionics, 2012, 225: 108. [11] 卢恺振, 王乐莹, 罗凌虹, 等. 可逆固体氧化物电池SrTiO3基燃料极材料的研究进展. 陶瓷学报, 2023, 44(6): 1066. [12] SUN X F, WANG S R, WANG Z R, et al.Anode performance of LST-xCeO2 for solid oxide fuel cells. Journal of Power Sources, 2008, 183(1): 114. [13] MOGENSEN M, LINDEGAARD T, HANSEN U R, et al.Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. Journal of The Electrochemical Society, 1994, 141(8): 2122. [14] XU J, ZHOU X L, CHENG J H, et al.Electrochemical performance of highly active ceramic symmetrical electrode La0.3Sr0.7Ti0.3Fe0.7O3-δ-CeO2 for reversible solid oxide cells. Electrochimica Acta, 2017, 257: 64. [15] ZHANG X M, SONG Y F, GUAN F, et al.Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2-δ nanoparticles-modified LSCM-GDC cathode. Journal of Catalysis, 2018, 359: 8. [16] PAN J L, MA G J, SONG L M, et al.Non-precious high stability/catalytic activity co-based perovskite as SOFC anode: in-situ preparation by fuel reducing method metals. Journal of Inorganic Materials, 2024, 39(8): 911. [17] LV H F, LIN L, ZHANG X M, et al.In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a co-doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis. Advanced Materials, 2020, 32(6): 1906193. [18] KIM Y H, JEONG H, WON B, et al.Exsolution modeling and control to improve the catalytic activity of nanostructured electrodes. Advanced Materials, 2023, 35(16): 2208984. [19] XU M, CAO R, QIN H, et al.Exsolved materials for CO2 reduction in high-temperature electrolysis cells. Materials Reports: Energy, 2023, 3(2): 100198. [20] NECHACHE A, HODY S.Alternative and innovative solid oxide electrolysis cell materials: a short review. Renewable and Sustainable Energy Reviews, 2021, 149: 111322. [21] GAN L Z, YE L T, TAO S W, et al.Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis. Physical Chemistry Chemical Physics, 2016, 18(4): 3137. [22] YANG XX, SUN W, MA M J, et al.Achieving highly efficient carbon dioxide electrolysis by in situ construction of the heterostructure. ACS Applied Materials & Interfaces, 2021, 13(17): 20060. [23] HE S, ZOU Y F, CHEN K F, et al.A critical review of the nano-structured electrodes of solid oxide cells. Chemical Communications, 2022, 58(76): 10619. [24] 陈静, 冯宇, 赵祯祥, 等. 静电纺丝技术在固体氧化物燃料电池中的应用. 硅酸盐学报, 2021, 49(9): 1861. [25] 张志鹏, 蒋耀, 周星宇, 等. 静电纺丝技术在固体氧化物燃料电池电极材料的应用. 功能材料, 2023, 54(9): 9038. [26] ZHANG X X, ZHENG Y P, DING Z F, et al.Nanoscale intertwined biphase nanofiber as active and durable air electrode for solid oxide electrochemical cells. ACS Sustainable Chemistry & Engineering, 2023, 11(23): 8592. [27] XU C M, ZHANG L H, SUN W, et al.Building efficient and durable 3D nanotubes electrode for solid oxide electrolytic cells. Journal of Power Sources, 2023, 556: 232479. [28] HU Q J, FAN L Q, WANG Y W, et al.Nanofiber-based LaxSr1-xTiO3-GDyCe1-yO2-δ composite anode for solid oxide fuel cells. Ceramics International, 2017, 43(15): 12145. [29] ZHANG D, ZHOU J, LUO Y, et al.Robust cobalt-free perovskite type electrospun nanofiber cathode for efficient electrochemical carbon dioxide reduction reaction. Journal of Power Sources, 2023, 587: 233705. [30] CIUCCI F, CHEN C.Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a bayesian and hierarchical bayesian approach. Electrochimica Acta, 2015, 167: 439. [31] EFFAT M B, CIUCCI F.Bayesian and hierarchical bayesian based regularization for deconvolving the distribution of relaxation times from electrochemical impedance spectroscopy data. Electrochimica Acta, 2017, 247: 1117. [32] CHOI Y, CHO H J, KIM J, et al.Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells. ACS Nano, 2022, 16(9): 14517. [33] ZHOU Z L, CUI J J, LIU Z R, et al.Exsolved medium-entropy alloy fecocuni in titanate fibers enables solid oxide cells with superb electrochemical performance. Journal of Materials Chemistry A, 2025. doi.org/10.1039/D4TA07207C. [34] 卢恺振, 王乐莹, 罗凌虹, 等. 可逆固体氧化物电池La0.2Sr0.8TiO3-δ基纤维燃料极的浸渍改性. 硅酸盐学报, 2024, 52(5): 1676. [35] CHAO Y, KE W X, ZHOU W Y, et al.Constructing LaNiO3/NiO heterostructure via selective dissolution of A-site cations from La1-xSrxNiO3 for promoting oxygen evolution reaction. Journal of Alloys and Compounds, 2023, 941: 168908. [36] WANG T P, SUN N, WANG R Z, et al.In-situ dual-exsolved nanometal anchoring on heterogeneous composite nanofiber using as SOEC cathode for direct and highly efficient CO2 electrolysis. Journal of Power Sources, 2025, 626: 235821. [37] YANG CC, TIAN Y F, PU J, et al.Anion fluorine-doped La0.6Sr0.4Fe0.8Ni0.2O3-δ perovskite cathodes with enhanced electrocatalytic activity for solid oxide electrolysis cell direct CO2 electrolysis. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 1047. [38] JIANG Y, CHEN F L, XIA C R.A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. Journal of Power Sources, 2021, 493: 229713. [39] WILLIAMS N J, OSBORNE C, SEYMOUR I D, et al.Application of finite Gaussian process distribution of relaxation times on SOFC electrodes. Electrochemistry Communications, 2023, 149: 107458. [40] LU C Y, XU C M, SUN W, et al.Enhancing catalytic activity of CO2 electrolysis by building efficient and durable heterostructure for solid oxide electrolysis cell cathode. Journal of Power Sources, 2023, 574: 233134. |