无机材料学报

• 研究论文 •    

固体氧化物电解池La0.3Sr0.6Ti1-xNixO3-δ基纤维燃料极电解CO2性能研究

王宏宾1, 王乐莹1, 罗凌虹1, 程亮2, 徐序1   

  1. 1.景德镇陶瓷大学 材料科学与工程学院,景德镇 333403;
    2.景德镇陶瓷大学 国家日用及建筑陶瓷工程技术中心,景德镇 333001
  • 收稿日期:2025-02-13 修回日期:2025-04-13
  • 通讯作者: 王乐莹, 副教授. E-mail: wly8858@163.com; 罗凌虹, 教授. E-mail: luolinghong@tsinghua.org.cn
  • 作者简介:王宏宾(1998-), 男, 硕士研究生. E-mail: wanghongbin612@163.com
  • 基金资助:
    江西省自然科学基金项目(20242BAB20086,20224ACB204010); 江西省教育厅科技落地计划(KJLD13072); 景德镇市科技局项目(20234ST002,2023GY001-06,20234ST005)

Electrolytic CO2 Performance of La0.3Sr0.6Ti1-xNixO3-δ based Fiber Fuel Electrode for Solid Oxide Electrolysis Cell

WANG Hongbin1, WANG Leying1, LUO Linghong1, CHENG Liang2, XU Xu1   

  1. 1. School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen
    333403, China;
    2. National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen
    333001, China;
  • Received:2025-02-13 Revised:2025-04-13
  • Contact: WANG Leying, associate professor. E-mail: wly8858@163.com; LUO Linghong, professor. E-mail: luolinghong@tsinghua.org.cn
  • About author:WANG Hongbin (1998-), male, Master candidate. E-mail: wanghongbin612@163.com
  • Supported by:
    Jiangxi Provincial Natural Science Foundation (20242BAB20086,20224ACB204010); Science and Technology Landing Program of Jiangxi Provincial Education Department (KJLD13072); Science and Technology Project of Jingdezhen City (20234ST002, 2023GY001-06, 20234ST005)

摘要: 界面工程调控是开发具备优异CO2催化活性的固体氧化物电解池燃料极材料的有效策略。本研究采用静电纺丝技术直接制备La0.3Sr0.6Ti1-xNixO3-δ/Ce0.9Gd0.1O2-δ (LSTNx/GDC)复合纤维,构建由LSTNx电子通道骨架、GDC离子通道嵌入以及原位Ni出溶纳米颗粒修饰构成的纤维基燃料极,研究不同B位镍掺杂量对纤维基燃料极形貌结构以及CO2催化活性的影响。扫描结果显示在x=0.15、0.20镍掺杂量掺杂的作用下,成功制得直径均匀(100~150 nm)、无明显颗粒团聚及断裂缺口的 LSTNx/GDC复合纤维,所制备的燃料极在还原气氛工况下可原位析出更多的Ni金属纳米颗粒(20~30 nm)。通过弛豫时间分布分析证实,B位镍金属纳米颗粒原位出溶能提供较多的活性位点,并与复合纤维、浸渍物构成丰富的异质界面加快界面电荷转移,显著增强电极对CO2的吸附催化能力。掺杂量x=0.20的电解池在1.5 V、850 ℃、CO2 : H2=5 : 5(体积比)条件下,电解电流密度达到0.799 A·cm-²,极化阻抗仅为0.171 Ω·cm²,其长期稳定性测试显示该电解池在1.3 V、850 ℃、CO2 : H2=5 : 5(体积比)条件下70 h内可维持电流无明显波动。

关键词: 固体氧化物电解池, 燃料极, 复合纤维, 原位Ni出溶, 弛豫时间分布

Abstract: Interface engineering is an effective strategy to develop fuel electrode materials with excellent catalytic activity of CO2 for solid oxide electrolysis cell. In this study, La0.3Sr0.6Ti1-xNixO3-δ/Ce0.9Gd0.1O2-δ (LSTNx/GDC) composite fibers were directly prepared by electrospinning technology, and the fiber-based fuel electrodes were constructed, which were composed of LSTNx electronic channel skeleton, GDC ion channel embedding and in-situ Ni exsolution nanoparticles. The effect of B-site Ni-doping on the morphology, structure and CO2 catalytic activity of fiber-based fuel electrode was studied. The results of Scanning Electron Microscope testing show that the LSTNx/GDC composite fibers with uniform diameter (100-150 nm) and no obvious particle agglomeration or fracture gap are successfully prepared when the Ni-doping is x=0.15 and 0.20. More in-situ B-site nickel nanoparticles (20-30 nm) could be exsolved from the prepared fuel electrode under the reducing atmosphere. The relaxation time distribution analysis confirms that in-situ exsolution of B-site nickel metal nanoparticles can not only provide more active sites, but also form rich heterointerfaces with composite fiber and impregnate to accelerate the interfacial charge transfer, and then significantly enhance the adsorption and catalytic ability of CO2. The electrolytic current density of the single cell with the doping of x=0.20 at 850 ℃, CO2 : H2=5 : 5 (in volume) under 1.5 V increases to 0.799 A·cm-², and the polarization impedance decreases to 0.171 Ω·cm², and presents excellent stability without significant current fluctuation for 70 h at 1.3 V, 850 ℃ under CO2 : H2=5 : 5 (in volume).

Key words: solid oxide electrolysis cell, fuel electrode, composite fiber, in-situ Ni exsolution, distribution of relaxation time

中图分类号: