| [1] |
EHSAN M F, HE T. In situ synthesis of ZnO/ZnTe common cation heterostructure and its visible-light photocatalytic reduction of CO2 to CH4. Applied Catalysis B: Environmental, 2015, 166-167: 345-352.
|
| [2] |
LEE C W, KOUROUNIOTI R A, WU J C S, et al. Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped Ti2O photocatalyst.Journal of CO2 Utilization, 2014, 5: 33-40.
|
| [3] |
WANG S B, WANG X C.Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework.Applied Catalysis B:Environmental, 2015, 162: 494-500.
|
| [4] |
HALMANN M.Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquidjunction solar cells.Nature, 1978, 275: 115-116.
|
| [5] |
LI Y, WANG W N, ZHAN Z L, et al.Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts.Applied Catalysis B:Environmental, 2010, 100(1/2): 386-392.
|
| [6] |
LI H L, LEI Y G, HUANG Y, et al.Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation.Journal of Natural Gas Chemistry, 2011, 20(2): 145-150.
|
| [7] |
YAN J H, CHEN H, ZANG L, et al.Inactivation of escherichia coil on lmmobilized CuO/CoFe2O4-TiO2 thin-film under simulated sunlight irradiation.Chinese Journal of Chemistry, 2011, 29(6): 1133-1138.
|
| [8] |
GRABOWSKA H, MISTA W, TRAWCZYNSKI J, et al.A method for obtaining thymol by gas phase catalytic alkylation of m-cresol over zinc aluminate spinel.Applied Catalysis A:General, 2001, 220(1/2): 207-213.
|
| [9] |
HOFFMAN A J, YEE H, MILLS G, et al.Photoinitiated Polymerization of methy1 methacrylate using Q-sized ZnO colloids.Journal of Physical Chemistry, 1992, 96(13): 5540-5546.
|
| [10] |
ZHANG L, YAN J H, ZHOU M J, et al.Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres.Applied Surface Science, 2013, 268: 237-245.
|
| [11] |
SARANYA M, SANTHOSH C, RAMACHANDRAN R, et al.Hydrothermal growth of CuS nanostructures and its photocatalytic properties.Power Technology, 2014, 252: 25-32.
|
| [12] |
ZHU Y X, WANG Y F, CHEN Z, et al.Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays.Applied Catalysis A:General, 2015, 498: 159-166.
|
| [13] |
XUE H G, HAO B W, LING X Z, et al.Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity.Angewandte Chemie International Edition, 2014, 53(23): 5917-5921.
|
| [14] |
YU C L, ZHOU W Q, LIU H, et al.Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion.Chemical Engineering Journal, 2016, 287: 117-129.
|
| [15] |
YU C L, CAO F F, LI X, et al.Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation.Chemical Engineering Journal, 2013, 219: 86-95.
|
| [16] |
YU C L, YANG K, YU X, et al.Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability.Nanoscale, 2013, 5(5): 2142-2151.
|
| [17] |
YAMAZAKI Y, TAKEDA H, ISHITANI O.Photocatalytic reduction of CO2 using metal complexes.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25: 106-137.
|
| [18] |
WANG J, HUANG C X, CHEN X L, et al.Photocatalytic CO2 reduction of BaCeO3 with 4f configuration electrons.Applied Surface Science, 2015, 358: 463-467.
|
| [19] |
YE S, WANG R, WU M Z, et al.A review on g-C3N4 for Photocatalytic water splitting and CO2 reduction.Applied Surface Science, 2015, 358: 15-27.
|
| [20] |
ZHANG L, YAN J H, ZHOU M J, et al.Preparation and photocatalytic property of hollow sphere-like ZnO/ZnAl2O4 composite photocatalysts with high specific surface area. Chinese Journal of Inorganic Chemistry, 2012, 28(9): 1827-1834.
|
| [21] |
SHEN S H, CHEN X B, REN F, et al.Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides.Nanoscale Research Letters, 2011, 6: 290-296.
|
| [22] |
XU J S, XUE D F, YAN C L, et al.Chemical synthesis of NaTaO3 power at low-temperature. Materials Letters, 2005, 59(23): 2920-2922.
|
| [23] |
DINA V M, SVETLANA V C, ANDREY A S, et al.Photocatalytic hydrogen evolution from aqueous solutions of Na2S/Na2SO3 under visible light irradiation on CuS/Cd0.3Zn0.7S and NizCd0.3Zn0.7S1+z.Chemical Engineering Journal, 2015, 262: 146-155.
|
| [24] |
ZHU Y M, XU D D, MENG M.Ultrasonic-assisted synthesis of amorphous Bi2S3 coupled (BiO)2CO3 catalyst with improved visible light-responsive photocatalytic activity.Journal of Materials Science, 2015, 50: 1594-1604.
|
| [25] |
GUAN B, LIN H, ZHU L, et al. Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NOx with NH3 over Ti0.9Ce0.05V0.05O2 - δ nanocomposites catalysts prepared by solution combustion route. Chemical Engineering Journal, 2012, 181-182: 307-322.
|
| [26] |
YU J G, LIU S W, YU H G.Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride- mediated self-transformation.Journal of Catalysis, 2007, 249(1): 59-60.
|
| [27] |
TAN D Z, FAN W J, XIONG W N, et al.Study on adsorption performance of conjugated micoporous polymers for hydrogen and organic solvents: the role of pore volume.European Polymer Journal, 2012, 48(4): 705-711.
|
| [28] |
ZHANG Y J, XU Y, LI T, et al.Preparation of ternary Cr2O3-SiC-TiO2 compasites for the photocatalytic production of hydrogen.Particuology, 2012, 10(1): 46-50.
|
| [29] |
LI G L, PAN C X.Fabrication and characterization of electrospun TiO2/CuS micro-nano-scaled composite fibers. Progress in Natural Science, 2012, 22(1): 59-63.
|
| [30] |
SARANYA M, RAMACHANDRAN R, SAMUEL E J, et al.Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst.Powder Technology, 2015, 279: 209-220.
|
| [31] |
MURUGADOSS G, THANGAMUTHU R, JAYAVEL R, et al.Narrow with tunableoptical band gap of CdS based core shell nanoparticles: applications in pollutant degradation and solar cells.Journal of Luminescence, 2015, 165: 30-39.
|
| [32] |
LIU Y, ZHANG M Y, LI L, et al.In situ ion exchange synthesis of the Bi4Ti3O12/Bi2S3 heterostructure with enhanced photocatalytic activity.Catalysis Communications, 2015, 60: 23-26.
|
| [33] |
WANG J J, JING Y H, OUYANG T, et al.Photocatalytic reduction of CO2 to energy products using Cu-TiO2/ZSM-5 and Co-TiO2/ZSM-5 under low energy irradiation.Catalysis Communications, 2015, 59: 69-72.
|
| [34] |
LIU E Z, QI L L, BIAN J J, et al.A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol.Materials Research Bulletin, 2015, 68: 203-209.
|
| [35] |
ZHOU Q, KANG S Z, LI X Q, et al.AgGaS2 nanopiates loaded with CuS: an efficient visible photocatalyst for rapid H2 evolution.International Journal of Hydrogen Energy, 2015, 40(11): 4119-4128.
|
| [36] |
SHEN S H, ZHAO L, ZHOU Z H, et al.Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation.The Journal of Physical Chemistry C. 2008, 112(41): 16148-16155.
|
| [37] |
YAN H J, YANG J H, MA G J, et al.Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst.Journal of Catalysis, 2009, 266(2): 165-168.
|