[1] PETKOV L. Electrooxidation of chloride systems. A review. Oxid. Commun, 2009, 32(3): 654–677.
[2] EXNER K S, ANTON J, JACOB T, et al. Chlorine evolution reaction on RuO2(110): ab initio atomistic thermodynamics study- pourbaix diagrams. Electrochim Acta, 2014, 120: 460–466.
[3] JANSSEN L J J. The mechanism of the chlorine evolution on different types of graphite anodes during the electrolysis of an acidic NaCl solution. Electrochim Acta, 1974, 19(6): 257–265.
[4] KUHN A T, MORTIMER C J. The kinetics of chlorine evolution and reduction on titanium-supported metal oxides especially RuO2 and IrO2. J. Electrochem. Soc., 1973, 120(2): 231–236.
[5] JANSSEN L J J, STARMANS L M C, VISSER J G, et al. Mechanism of the chlorine evolution on a ruthenium oxide itanium oxide electrode and on a ruthenium electrode. Electrochim Acta, 1977, 22(10): 1093–1100.
[6] DENTON D A, HARRISON J A, KNOWLES R I. Chlorine evolution and reduction on RuO2\TiO2 electrodes. Electrochim Acta, 1979, 24(5): 521–527.
[7] CONSONNI V, TRASATTI S, POLLAK F, et al. Mechanism of chlorine evolution on oxide anodes study of pH effects. J. Electroanal. Chem., 1987, 228(1/2): 393–406.
[8] ARDIZZONE S, CARUGATI A, LODI G, et al. Surface structure of ruthenium dioxide electrodes and kinetics of chlorine evolution. J. Electrochem Soc., 1982, 129(8): 1689–1693.
[9] JANSSEN L J J, VISSER G J, BARENDRECHT E. Effect of molecular chlorine diffusion on theoretical potential-current density relations for chlorine evolving electrode. Electrochim Acta, 1983, 28(2): 155–163.
[10] ZHANG S J, DU A L, XU L K, et al. Study on deactivation behavior of metal oxide anode at differernt seawater electrolysis temperature. Rare Metal Mat. Eng., 2013, 42(12): 2613–2618.
[11] BURKE L D, O'NEILL J F. Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes. J. Electroanal. Chem., 1979, 101(3): 341–349.
[12] FAITA G, FIORI G. Anodic discharge of chloride ions on oxide electrodes. J. Appl. Electrochem., 1972, 2(1): 31–35.
[13] ERENBURG R G. Mechanism of the chlorine reaction of rutheniu- mtitanium oxide anodes. Soviet Electrochemistry, 1984, 20(12): 1481–1486.
[14] KRISHTALIK L I. Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes. Electrochim Acta, 1981, 26(3): 329–337.
[15] AUGUSTYNSKI J, BALSENC L, HINDEN J. X-Ray photoelectron spectroscopic studies of RuO2-based film electrodes. J. Electrochem. Soc., 1978, 125(7): 1093–1097.
[16] CONWAY B E, NOVAK D M. Chloride ion adsorption effects in the recombination-controlled kinetics of anodic chlorine evolution at Pt electrodes. Journal of the Chemical Society, Faraday Transactions 1, 1979, 75: 2454–2472.
[17] KUSMIEREK E, CHRZECIJANSKA E. Use of the CeO2-modified Ti\TiO2-RuO2 electrodes in oxidation of acid orange 7. Przem. Chem., 2012, 91(10): 2038–2043.
[18] GAN W P, LIU J Y, LIU H, et al. Characterization and electrochemical properties of RuO2 film electrode on the inner-wall of tantalum shell for capacitor. J. Inorg. Mater., 2010, 25(8): 882–886.
[19] SUN J M, WANG X, WEI Z P, et al. Effects of sintering temperature on Ti/RuO2-CeO2 electrodes applied in super-capacitors. J. Chin. Rare Earth Soc., 2011, 29(6): 718–723.
[20] NOWAKOWSKI P, VILLAIN S, AGUIR K, et al. Microstructure and electrical properties of RuO2-CeO2 composite thin films. Thin Solid Films, 2010, 518(10): 2801–2807.
[21] FAN N J, ZHU P X, ZHOU S G, et al. Optimization for preparation technique of Ru-La oxide coating titanium anode by orthogonal design. Hot Working Technology, 2014, 43(12): 160–162.
[22] MURAKAMI Y, KONDO T, SHIMODA Y, et al. Effects of rare earth chlorides on the preparation of porous ruthenium oxide electrodes. J. Alloys Compd., 1996, 239(2): 111–113.
[23] LONG P, XU L K, LI Q F, et al. Effect of microstructure on electrochemical activity of Ru-La oxide coatings on Ti substrate. Rare Metal Mat. Eng., 2013, 42(6): 1185–1189.
[24] LONG P, LI Q F, XU L K, et al. Electrochemical impedance spectroscopy (EIS) study of Ru-La oxide coatings in NaCl solution. Acta Chim. Sinica, 2012, 70(10): 1166–1172.
[25] LONG P, XU L K, XUE L L, et al. Voltammetry behavior of Ru-La oxide coatings on Ti substrate in NaCl solution. Rare Metal Mat. Eng., 2014, 43(5): 1133–1137.
[26] BURROWS I R, DENTON D A, HARRISON J A. Chlorine and oxygen evolution on various compositions of RuO2\TiO2 electrodes. Electrochim Acta, 1978, 23(6): 493–500.
[27] VALETTE G, PARSONS R. Adsorption on well-defined solid surfaces chloride adsorption on a (110) face of silver. J. Electroanal.?Chem., 1986, 204(1/2): 291–297.
[28] DAGHETTI A, LODI G, TRASATTI S. Interfacial properties of oxides used as anodes in the electrochemical technology. Mater. Chem . Phys., 1983, 8(1): 1–90.
[29] 阿伦·j·巴德 美, 拉里·r·福克纳. 电化学方法: 原理和应用. 第二版. 北京: 化学工业出版社, 2005: 571.
[30] NOVAK D M, CONWAY B E. Competitive adsorption and state of charge of halide ions in monolayer oxide film growth processes at Pt anodes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases , 1981, 77: 2341–2359.
[31] TAKASU Y, ARIKAWA T, YANASE K, et al. Preparation of a novel Pt-RuO2\Ti electrocatalyst by use of highly porous ruthenium oxide support prepared from RuO2-La2O3/electrode. J. Alloys Compd., 1997, 261(1/2): 172–175. |