无机材料学报, 2022, 37(5): 499-506 DOI: 10.15541/jim20210402

研究论文

(0.96NaNbO3-0.04CaZrO3)-xFe2O3反铁电陶瓷的介电及储能性能研究

叶芬,1,2, 江向平,1, 陈云婧1, 黄枭坤1, 曾仁芬1, 陈超1, 聂鑫1, 成昊,2

1. 景德镇陶瓷大学 材料科学与工程学院, 江西省先进陶瓷材料重点实验室, 景德镇 333001

2. 铜仁学院 材料与化学工程学院, 铜仁 554300

Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics

YE Fen,1,2, JIANG Xiangping,1, CHEN Yunjing1, HUANG Xiaokun1, ZENG Renfen1, CHEN Chao1, NIE Xin1, CHENG Hao,2

1. Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China

2. College of Material and Chemical Engineering, Tongren University, Tongren 554300, China

通讯作者: 江向平, 教授. E-mail:jiangxp64@163.com成昊, 教授. E-mail:smallone.1@163.com

收稿日期: 2021-06-28   修回日期: 2021-07-20  

基金资助: 国家自然科学基金(52062018)
国家自然科学基金(51862016)
国家自然科学基金(51762024)
江西省自然科学基金(20192BAB20600)
江西省自然科学基金(20192BAB212002)
江西省教育厅科技项目(GJJ190712)
江西省教育厅科技项目(GJJ190699)
贵州省教育厅创新团队(KY[2018]030)

Corresponding authors: JIANG Xiangping, professor. E-mail:jiangxp64@163.comCHENG Hao, professor. E-mail:smallone.1@163.com

Received: 2021-06-28   Revised: 2021-07-20  

Fund supported: National Natural Science Foundation of China(52062018)
National Natural Science Foundation of China(51862016)
National Natural Science Foundation of China(51762024)
Natural Science Foundation of Jiangxi Province(20192BAB20600)
Natural Science Foundation of Jiangxi Province(20192BAB212002)
Foundation of Jiangxi Provincial Education Department(GJJ190712)
Foundation of Jiangxi Provincial Education Department(GJJ190699)
Foundation of the Department of Education of Guizhou province(KY[2018]030)

摘要

0.96NaNbO3-0.04CaZrO3(简称NNCZ)陶瓷在室温下展现出稳定的双电滞回线, 但是其储能密度、储能效率和击穿强度都比较低, 限制其成为储能材料。本工作通过掺杂Fe2O3, 利用Fe 3+离子变价的特点, 实现NNCZ储能性能的优化。采用传统固相法制备了(0.96NaNbO3-0.04CaZrO3)-xFe2O3(简称NNCZ-xFe)反铁电储能陶瓷, 并对样品的相结构、微观形貌、电学性能和储能性能进行了表征, 重点研究了Fe2O3掺杂量对NNCZ陶瓷介电和储能性能的影响规律。结果表明, 样品均具有单一的钙钛矿结构, 掺杂Fe2O3能明显降低NNCZ陶瓷的烧结温度, 晶粒平均尺寸随着掺杂量增大先减小后增大, 掺杂量x=0.02时, 晶粒平均尺寸最小(5.04 mm), 且具有较好的储能性能。室温下, NNCZ-0.02Fe击穿强度为230 kV/cm, 击穿前的有效储能密度和储能效率分别为1.57 J/cm 3和55.74%。在125 ℃和外加电场为180 kV/cm下, NNCZ-0.02Fe的储能密度为4.53 J/cm 3。掺杂Fe2O3使NNCZ陶瓷的烧成温度降低, 氧空位的迁移速率下降, 抑制晶粒的长大, 同时降低了介电损耗, 使得击穿强度增加; 适量氧空位钉扎使得反铁电相向铁电相相翻转变得困难, 避免出现哑铃状双电滞回线, 从而提高储能效率。本研究结果表明NNCZ-xFe在电介质储能领域具有潜在应用价值。

关键词: NaNbO3; 反铁电; 储能性能; 介电性能

Abstract

0.96NaNbO3-0.04CaZrO3(NNCZ) ceramic shows stable double hysteresis loops at room temperature, but the property of energy density, energy storage efficiency and breakdown strength of NNCZ are terrible, which limit NNCZ to be used as energy storage materials. In this work, Fe2O3 was chosen to modify the energy storage property of NNCZ. (0.96NaNbO3-0.04CaZrO3)-xFe2O3 (NNCZ-xFe) antiferroelectric ceramics were prepared by traditional solid reaction method. The phase, morphology, dielectric property and energy storage property of NNCZ-xFe were characterized. The results indicated that the crystal structures of NNCZ-xFe ceramics were pure perovskite structure. The sintering temperature of NNCZ ceramic was decreased with addition of Fe2O3. With the increase of Fe2O3 content, the grain size of NNCZ-xFe were decreased firstly and then raised. The NNCZ-0.02Fe ceramic obtained the smallest grain size (5.04 μm) and the best energy storage property. The breakdown strength of NNCZ-0.02Fe was 230 kV/cm at room temperature (RT). The recoverable energy density and energy storage efficiency before breakdown were 1.57 J/cm 3and 55.74% respectively. At 125 ℃ and 180 kV/cm, the energy density of NNCZ- 0.02Fe was 4.53 J/cm 3. Fe2O3 doping decreased the sintering temperature of NNCZ ceramics, reduced the the migration rate of oxygen vacancies and inhibited the growth of grains. At the same time, it reduced the dielectric loss and improved the breakdown strength. The oxygen vacancies pinning made antiferroelectric phase switch to ferroelectric phase harder, avoided appearance dumbbell-shaped double hysteresis loops, so the energy storage efficiency was improved. This research shows that NNCZ-xFe has a good potential application in the field of dielectric energy storage.

Keywords: NaNbO3; antiferroelectric; energy storage property; dielectric property

PDF (2399KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

叶芬, 江向平, 陈云婧, 黄枭坤, 曾仁芬, 陈超, 聂鑫, 成昊. (0.96NaNbO3-0.04CaZrO3)-xFe2O3反铁电陶瓷的介电及储能性能研究. 无机材料学报, 2022, 37(5): 499-506 DOI:10.15541/jim20210402

YE Fen, JIANG Xiangping, CHEN Yunjing, HUANG Xiaokun, ZENG Renfen, CHEN Chao, NIE Xin, CHENG Hao. Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics. Journal of Inorganic Materials, 2022, 37(5): 499-506 DOI:10.15541/jim20210402

介质电容器因具有储能密度大、温度稳定性好、充放电效率高等优点而被应用于先进电器设备领域[1,2,3]。作为介质电容器核心材料的反铁电(Antiferroelectric, AFE)材料因具备双电滞回线特性, 当外加电场升至铁电相畴翻转(EAF)时, 介电常数增加[4], 比线性电介质和铁电电介质储存和释放更多的电能[5]。1949年, NaNbO3(NN)晶体被Matthias[6]发现, 并认为是铁电(Ferroelectric, FE)材料, 之后Vousden[7]发现NaNbO3(NN)在室温下表现出AFE特性。

目前, 有关NN陶瓷晶相组成调控的研究报道很多[8,9], 如利用压力、温度、外置电场、晶粒尺寸和化学组成等方法调控, 普遍认为, NN陶瓷在室温下的主晶相为AFE(P相)和亚稳相为FE(Q相)[4], 尺寸效应和外加电场可以诱导NN陶瓷出现亚稳FE相[8], 所以NN陶瓷很难在室温下观察到双电滞回线, 从而限制了NN陶瓷在储能领域的应用。美国宾夕法尼亚州立大学CLIVE课题组[4,9-13]通过掺杂(BiScO3(BS)、SrZrO3(SZ)、CaZrO3(CZ)、CaHfO3(CH))使NN出现了双电滞回线, 但是没有对储能性能进行评价。Liu等[2]研究了CZ掺杂对NN微观结构、相组成和电学性能的影响, 成功获得了双电滞回线, 当CZ掺杂量(摩尔分数)为0.04%时, NN-0.04CZ陶瓷晶粒平均粒径最小, 击穿强度(Breakdown strength, BDS)约141 kV/cm, 有效储能密度(Wrec)只有0.55 J/cm3, 储能效率(η)仅为63%, 与其它AFE材料的储能性能相差较大, 且BDS较低。Qi等[14]研究了(0.94-x)NaNbO3-0.06BaZrO3-xCaZrO3陶瓷的储能性能, 当x=0.04时, 在0.1 Hz下, 样品的Wrec为1.59 J/cm3, 但η只有30%。Wang课题组[15,16]通过掺杂CaSnO3(CS), 在室温下成功获得了双电滞回线, 并研究了稀土La、Sm和Lu对0.96NN-0.04CS储能性能的影响。

储能密度(W)、有效储能密度(Wrec)和储能效率(η)是储能材料的主要参数, 计算公式如下[1]:

$W=\int_{0}^{{{P}_{\max }}}{E\text{d}P}$

${{W}_{\text{rec}}}=\int_{{{P}_{\text{r}}}}^{{{P}_{\max }}}{E\text{d}P}$

$\eta =\frac{{{W}_{\text{re}c}}}{W}\times 100%$

其中, P, Pmax, PrE分别代表极化强度、最大极化强度、剩余极化强度和外加电场强度。为了提高WWrec, 需要同时增加Pmax, 减小Pr并提高BDS。

变价离子价态丰富, 可以占据A位、B位或者同时占据A位和B位, 能够很好地调控材料的性能。如Mn离子在煅烧过程中可能出现Mn2+/Mn3+/Mn4+, 对应的离子半径为0.083、0.064和0.053 nm, 可以取代A位的Ag或者B位的Nb, 对AgNbO3的储能性能起到很好的调控作用[17]。掺杂Mn减少了NN陶瓷的氧空位, 电学性能得到改善[18]。本工作采用固相法制备了NNCZ-xFe陶瓷, 通过掺杂可变价的过渡金属元素Fe来调控0.96NaNbO3-0.04CaZrO3(NNCZ)陶瓷性能, 以降低NNCZ的烧结温度, 减小样品的晶粒尺寸, 抑制氧空位的迁移速率,提高其BDS, 从而最终提高NNCZ陶瓷的Wrecη

1 实验方法

采用固相法制备(0.96NaNbO3-0.04CaZrO3)- xFe2O3 (x=0, 0.005, 0.01, 0.015, 0.02, 0.025)陶瓷, 简写NNCZ-xFe。Nb2O5(99.5%)、Na2CO3(99.8%)、CaCO3(99%)、ZrO2(99%)、Fe2O3(99%)称量前充分干燥, 以无水乙醇为分散剂, 氧化锆球为介质, 球磨24 h, 料浆烘干后压成直径为5 cm的圆片, 在800 ℃下预烧6 h。二次球磨后的泥浆干燥过筛得到预合成的粉体, 加入PVA(质量分数5%)造粒, 在340 MPa下压制成直径为13 mm, 厚度~1 mm圆片生坯。在600 ℃排胶2 h, 采用埋烧的方式, NNCZ和NNCZ-xFe 分别在1370和1230 ℃下煅烧2 h得到陶瓷。陶瓷样品两面经过抛光, 使用丝网印刷, 根据测试需要刷不同直径的银浆, 在550 ℃下保温30 min制备银电极, 用于电学性能测试。

采用X射线衍射仪(XRD, D8-Advance A25, Bruker)和扫描电子显微镜(SEM, SU8010, Hitachi)对样品相组成和微观形貌进行表征, 采用介电温谱测试系统(HP4294A, Agilent)测试介电温谱, 采用铁电综合测试系统(Trek model 609B, Radiant)获得陶瓷的电滞回线, 采用X射线光电子能谱仪(XPS, EscaLab250Xi, Thermo Fisher Scientific)对样品表面的化学元素价态及含量进行表征, 采用绝缘电阻仪测得直流电阻(TH2684, Tonghui)。

2 结果与讨论

图1为NNCZ-xFe陶瓷的XRD图谱。由图1(a)可见, NNCZ-xFe陶瓷呈现单一的钙钛矿相, 没有出现明显的第二相, 且结晶度较好, 说明Fe3+成功固溶进入NNCZ晶格。从局部放大的图1(b, c)可见, 随着Fe2O3掺杂量增大, 衍射峰先向低角度再向高角度移动, 表明NNCZ-xFe陶瓷晶胞体积随着Fe2O3掺杂量的增加, 先变大后减小。NNCZ的烧结温度为1370 ℃, 在较高温度下Na+会挥发, 从而导致化学计量偏离和晶粒异常长大及晶胞体积减小[19]。掺杂Fe2O3使NNCZ陶瓷的烧结温度降到1230 ℃, 烧结温度降低使钠离子挥发量减少, 与NNCZ相比, 晶胞体积变大。所以少量离子半径较小的Fe3+(0.0645 nm)置换离子半径较大的Zr4+ (0.072 nm), NNCZ-0.005Fe陶瓷的晶胞体积仍然比NNCZ大, XRD衍射峰向低角度偏移[20]

图1

图1   NNCZ-xFe陶瓷的XRD图谱

(a), 22.5º~22.8º放大图谱(b)和31.8º~33.0º放大图谱(c)

Fig. 1   XRD patterns of NNCZ-xFe ceramics

(a), enlarged XRD patterns from 22.5° to 22.8° (b), and from 31.8° to 33.0° (c) of NNCZ-xFe ceramics


众所周知, 离子半径差小于15%, 离子价态相等时容易形成置换固溶体。Fe3+与Zr4+(0.072 nm)离子半径差为11.63%, Fe3+与Zr4+价态最接近, 掺杂的Fe3+优先与Zr4+发生置换, 再与Nb5+(0.064 nm)发生置换。随着Fe2O3掺杂量进一步增大, 离子半径小的Fe3+置换了更多离子半径大的Zr4+, 使得NNCZ- xFe陶瓷的<B-O>八面体体积进一步减小, 导致晶胞体积减小[21], XRD衍射峰逐渐向高角度偏移, 如图1(b, c)所示。此外, 质量较小的Fe3+离子取代较大的Zr4+离子, 会使拉曼模向高频方向移动, 进一步证明Fe3+已进入晶格。

是NNCZ-xFe陶瓷的表面形貌照片。从图2(a)可知, NNCZ陶瓷晶粒尺寸大小不均匀且有异常长大的现象, 与Liu等[2]研究结果一致。掺杂Fe2O3后, 样品的煅烧温度降低, 晶粒尺寸明显减小, 如图2(b)所示。采用Nano Measurer 软件统计了NNCZ-xFe陶瓷晶粒的平均尺寸, 如图2(c)所示, 随着Fe2O3掺杂量增大, NNCZ-xFe陶瓷晶粒的平均尺寸先减小后增大, 当x=0.02时, 平均晶粒尺寸最小为5.04 mm。

图2

图2   NNCZ-xFe陶瓷的表面形貌照片及其平均粒径

Fig. 2   Surface morphologies of NNCZ-xFe ceramics and corresponding average grain size

(a) x=0; (b) x=0.02; (c) Average grain size


NNCZ陶瓷的氧空位主要来源于高温煅烧时Na+的挥发, 为了平衡价态, 产生了氧空位, 大量的氧空位为离子迁移提供了通道, 促进了晶粒的生长[2]。NNCZ-xFe的氧空位一部分来源于Na+挥发, 另外一部分来源于低价态的Fe3+置换了高价态的Zr4+和Nb5+。掺杂Fe2O3使煅烧温度明显降低, Na+的挥发量减少, 与NNCZ相比, 该部分氧空位数量下降。Fe2O3在高温情况下容易还原成FeO, 产生游离的氧[O], 见式(4)[20], 产生的[O]会消耗一部分氧空位, 所以适量掺杂Fe2O3不会引起NNCZ陶瓷氧空位数量发生较大变化。当掺入过量Fe2O3时, 氧空位数量进一步增加, 促进晶粒生长。所以当掺杂量增加到0.025%时, 晶粒平均尺寸有上升趋势, 见图2(c)。

$\text{F}{{\text{e}}_{2}}{{\text{O}}_{3}}\to 2FeO+[O]$

进一步研究Fe2O3掺杂对NNCZ陶瓷氧空位数量的影响, 对NNCZ和NNCZ-0.02Fe陶瓷样品的O1s进行了XPS分析, 如图3所示。NNCZ可以拟合出3个Gauss峰, OL在529 eV附近, 对应的是钙钛矿结构的晶格氧。图中其它峰是与OH基相关的吸附氧, 一般通过检测陶瓷表面OH含量, 可以间接表征氧空位浓度[22]。OV在531 eV附近, 对应氧空位; OW在533 eV附近, 对应吸附水[22,23]。掺杂Fe2O3使NNCZ陶瓷表面O的形态多样化, 拟合出了第四个峰(OFe), 这个峰与Fe3+有关[24]。一般通过氧空位与晶格氧之间的面积比(OV/OL)可以间接判断氧空位浓度的变化, 由图3可知, NNCZ和NNCZ-0.02Fe的OV/OL分别为0.41和0.45, 因此NNCZ和NNCZ-0.02Fe氧空位溶度比较接近。

图3

图3   NNCZ-xFe陶瓷的O1s XPS图谱

Fig. 3   XPS spectra of O1s peak for NNCZ-xFe

(a) x=0; (b) x=0.02


就压电陶瓷而言, 中低温条件下最可能发生迁移的是氧空位, 氧空位浓度和迁移速率是影响其电学性能的重要因素。NNCZ和NNCZ-0.02Fe陶瓷氧空位浓度接近, 故氧空位的迁移速率是影响其电学性能的主要因素, 可以间接通过氧空位激活能(Ea)和电阻率(ρ)来表征。对NNCZ和NNCZ-0.02Fe陶瓷晶粒和晶界的Ea分别进行拟合计算[25,26], Ea在0.74~1.14 eV范围, 表明在350~470 ℃范围内NNCZ和NNCZ-0.02Fe陶瓷均以氧空位电导为主[27]。NNCZ和NNCZ-0.02Fe晶粒的Ea接近但是低于晶界, 说明晶界是影响氧空位迁移速率的主要因素。NNCZ-0.02Fe陶瓷的晶界Ea高于NNCZ陶瓷, 表明氧空位在NNCZ-0.02Fe陶瓷内的迁移速率低于NNCZ陶瓷。根据以上分析可知NNCZ-0.02Fe陶瓷的ρ应高于NNCZ陶瓷, NNCZ-0.02Fe的实测ρ确实高于NNCZ, 如图4所示。90~150 ℃范围内两者电阻率相差较大, 随着温度升高, 两者差距逐渐缩小。氧空位容易与缺陷形成缺陷偶极子对(Fe’zr-V··o-或FeNb-V··o)限制氧空位的迁移[21], 使ρ升高, 另外, NNCZ-0.02Fe陶瓷晶粒尺寸较小, 晶界密度大, 使氧空位迁移变得更困难。

图4

图4   NNCZ-xFe陶瓷的电阻率(ρ)随温度的变化曲线

Fig. 4   Temperature dependence of electrical resistivity (ρ) for NNCZ-xFe in the different temperature range


图5(a, b)为NNCZ-xFe陶瓷在100 kHz频率下测得的介电常数εr和介电损耗tand随温度变化的曲线图, 图5(c)为NNCZ-xFe的居里温度(TC)及室温下的介电常数与Fe2O3掺杂量的关系曲线。在300 ℃左右出现的介电异常峰, 对应于AFE的P相向R相(Pnmm)转变[15], 如图5(a)所示。随着Fe2O3掺杂量变化, NNCZ的介电损耗也发生变化, 由图5(b)可知, x=0.02样品的介电损耗最低, 这是由于NNCZ-0.02Fe氧空位的迁移速率较低, 晶界较多, 损耗相应减小。从图5(c)可知, NNCZ-xFe陶瓷的TC比较接近。随着Fe2O3掺杂量增大, 介电常数先增大后减小。这是由于较大离子极化率的Fe3+(2.14×10-3 nm3)置换了离子极化率较小的Zr4+(2.023×10-3 nm3), 所以介电常数上升; 当过量掺杂时, Fe3+置换了离子极化率较高的Nb5+(3.1×10-3 nm3), 介电常数又随之下降[28]

图5

图5   NNCZ-xFe陶瓷的介电性能

Fig. 5   Dielectric property of NNCZ-xFe ceramics

(a) Temperature dependence of relative permittivity of NNCZ-xFe ceramics; (b) Loss tangent of NNCZ-xFe ceramics; (c) Change of Curie temperature (TC) and dielectric constant at room temperature (RT) with the content of Fe3+colorful figures are available on website


NNCZ-xFe陶瓷在室温下测得的电滞回线如图6所示, 样品均表现出双电滞回线。x=0.005~0.02样品均表现出夹紧状双电滞回线, 当掺杂量增加到x=0.025时, 出现哑铃状的双电滞回线, 且Pmax明显增大。从NNCZ-xFe陶瓷的电流回线可以看到, 掺杂后的样品均出现了4个电流峰, 且AFE®FE对应的电流峰明显, 表明NNCZ-xFe陶瓷均以AFE的微米畴为主[16]。且随着掺杂量增大, AFE®FE对应的电流峰逐渐明显, 表明样品中FE相增多, 所以Pmax逐渐增大。x=0.01、0.015、0.02和0.025样品对应的AFE®FE翻转电场强度(EAF)分别为: 202.2、200.1、198.9、198.4和185.2 kV/cm, 过量的Fe2O3使EAF减小。

图6

图6   NNCZ-xFe陶瓷室温下测得的电滞回线

Fig. 6   P-E loops of NNCZ-xFe ceramics at room temperature

(a) x=0; (b) x=0.005; (c) x=0.01; (d) x=0.015; (e) x=0.02; (f) x=0.025


氧空位对铁电畴能起到钉扎作用, 但是钉扎效应与氧空位数量存在最优配比。掺杂过量Fe2O3使NNCZ陶瓷氧空位进一步增加, 钉扎效应减弱, 使得NNCZ-0.025Fe陶瓷中大量的AFE向FE转变, 出现如图6(f)所示的哑铃状双电滞回线, Pmax明显增大。

NNCZ-xFe陶瓷的击穿强度(BDS)及击穿前的Wrecη图7(a, b)所示, 随着掺杂量增大, BDS先增加后减小。影响BDS的因素很多, 如带隙、气孔、粒径、第二相和厚度等。介电陶瓷发生击穿的形式有本征击穿、电子击穿、热击穿和缺陷击穿[29]。Fe2O3掺杂后, NNCZ-xFe的晶粒尺寸减小, 小而多的晶界可以作为移动电荷的耗尽区, 氧空位的迁移速率小使介电损耗降低, 加电压时降低了热击穿概率, 所以Fe2O3掺杂使NNCZ陶瓷的BDS升高, 当x=0.02时BDS出现了最大值, 对应的Wrecη分别为1.57 J/cm3和55.74%。

NNCZ-xFe陶瓷的Wrecη随着电场的变化曲线如图7(c, d)所示, 随着电场强度增大, Wrec逐渐增大, 掺杂Fe2O3明显提高了NNCZ的η。在200 kV/cm电场强度下, x=0.02和x=0.025样品的WWrec分别为2.35、1.36和3.32、1.39 J/cm3, 但x=0.025样品的η明显恶化, 作为储能陶瓷不仅需要较高的W, 也需要较稳定的η, 避免材料在使用过程中过早损坏[30]x=0.02样品的η相对其它样品较稳定, 所以对x=0.02样品的温度稳定性和频率稳定性进一步研究。

图7

图7   NNCZ-xFe陶瓷的击穿强度和储能性能

Fig. 7   Breakdown strength and energy storage property of NNCZ-xFe ceramics

(a) Breakdown strength; (b) Energy storage property before breakdown; (c, d) Energy storage property at different electric fields


图8是NNCZ-0.02Fe陶瓷在不同温度和不同频率的电滞回线和储能性能。由图8(a, b)可见, 随着温度升高, NNCZ-0.02Fe样品的电滞回线逐渐展开, 对应的WWrec逐渐升高, 室温至100 ℃表现较好的温度稳定性, η变化率为7.3%。在125 ℃下WWrec分别为4.53和1.53 J/cm3, 但是η下降到33.8%。从图8(a)可知, 其双电滞回线突变成哑铃状, 表明在125 ℃和180 kV/cm电场强度下, 大量的AFE向FE发生了转变导致PmaxW急剧增大。

图8

图8   NNCZ-0.02Fe陶瓷在不同温度和频率下的电滞回线储能性能

Fig. 8   P-E loops and energy storage properties of NNCZ-0.02Fe ceramics at different temperatures and different frequencies

(a) P-E loops of different temperatures; (b) Energy storage properties of different temperatures; (c) P-E loops of different frequencies; (b) Energy storage properties of different frequency


NNCZ-0.02Fe陶瓷的储能性能在10~100 Hz范围内表现出良好的稳定性, 随着频率增加, η由63.5%增大到66.5%, η变化率为4.7%, 这是由于NNCZ-0.02Fe陶瓷内的畴翻转跟不上外部电场, 所以W稍微减小, Wrec基本保持不变, η有上升趋势[31]

3 结论

通过传统固相法制备,的(0.96NaNbO3- 0.04CaZrO3)-xFe2O3(NNCZ-xFe)陶瓷, 呈现单一钙钛矿结构, 无明显的第二相。掺杂Fe2O3能明显降低NNCZ陶瓷的烧结温度, 且随着掺杂量增大, 晶粒的平均尺寸和介电常数先减小后增大, x=0.02时, 样品的平均晶粒尺寸最小(5.04 mm), 击穿强度最大(230 kV/cm), 介电常数最高。室温下, NNCZ-0.02Fe陶瓷击穿前的有效储能密度(Wrec)和储能效率(η)分别为1.57 J/cm3和55.74%。在电场强度为180 kV/cm下, 室温至100 ℃, NNCZ-0.02Fe表现出良好的温度稳定性, η变化率为7.3%, 在125 ℃下, 储能密度为4.53 J/cm3; 在测试频率为10~100 Hz时, 表现较高且稳定的储能效率, 储能效率维持63.5%以上, η变化率为4.7%。本研究表明: NNCZ-0.02Fe在电介质储能领域具有较好的潜在应用价值。

参考文献

QI H, ZUO R Z.

Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency

J. Mater. Chem. A, 2019,7(8):3971-3978.

[本文引用: 2]

LIU Z Y, LU J S, MAO Y Q, et al.

Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases

J. Eur. Ceram. Soc., 2018,38(15):4939-4945.

[本文引用: 4]

ZHU L F, YAN Y K, LENG H Y,et al.

Energy-storage performance of NaNbO3 based multilayered capacitors

J. Mater. Chem. C, 2021,9(25):7950-7957.

[本文引用: 1]

SHIMIZU H, GUO H Z, REYES-LILLO S E,et al.

Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0≤x≤0.10)

Dalton. T., 2015,44(23):10763-10772.

[本文引用: 3]

LIU X, ZHAO Y Y.

Research progress of antiferroelectric energy storage ceramics

Electronic Components and Materials, 2020,39(11):55-66.

[本文引用: 1]

MATTHIAS B T.

New ferroelectric crystals

Physical Review, 1949,75(11):1771.

[本文引用: 1]

VOUSDEN P.

The non-polarity of sodium niobate

Acta. Cryst., 1952,5(5):690.

[本文引用: 1]

ZHANG H F, YANG B, YAN H X, et al.

Isolation of a ferroelectric intermediate phase in antiferroelectric dense sodium niobate ceramics

Acta Mater., 2019,179:255-261.

[本文引用: 2]

GUO H Z, SHIMIZU H, CLIVE A RANDALL.

Microstructural evolution in NaNbO3-based antiferroelectrics

J. Appl. Phys., 2015,118(17):174107.

[本文引用: 2]

GUO H Z, SHIMIZU H, CLIVE A RANDALL.

Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics

Appl. Phys. Lett., 2015,107(11):112904.

GAO L S, GUO H Z, ZHANG S J,et al.

Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops

Appl. Phys. Lett., 2018,112(9):092905.

GUO H Z, SHIMIZU H, YOUICHI MIZUNO, et al.

Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution

J. Appl. Phys., 2015,117(21):214103.

GAO L S, GUO H Z, ZHANG S J, et al. A perovskite lead-free antiferroelectric xCaHfO3-(

1-x) NaNbO3 with induced double hysteresis loops at room temperature

J. Appl. Phys., 2016,120(20):204102.

[本文引用: 1]

QI H, ZUO R Z, XIE A W, et al.

Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops

J. Eur. Ceram. Soc., 2019,39(13):3703-3709.

[本文引用: 1]

YE J M, WANG G S, CHEN X F, et al.

Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics

J. Appl. Phys., 2019,114(12):122901.

[本文引用: 2]

YE J M, WANG G S, CHEN X F,et al.

Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics

J. Materiomics, 2021,7(2):339-346.

[本文引用: 2]

ZHAO L, LIU Q, ZHANG S J, et al.

Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification

J. Mater. Chem. C, 2016,4(36):8380-8384.

[本文引用: 1]

WOLSKA A, MOLAK A, LAWNICZAK-JABLONSKA K,et al.

XANES Mn K edge in NaNbO3 based ceramics doped with Mn and Bi ions

Phys. Scripta, 2005,2005(T115):989-991.

[本文引用: 1]

CHAO L M, HOU Y D, ZHENG M P,et al.

NaNbO3 nanoparticles: Rapid mechanochemical synthesis and high densification behavior

J. Alloy. Compd., 2017,695:3331-3338.

[本文引用: 1]

DONG L, DONG G X, ZHANG Q.

Dielectric properties of Fe2O3-doped MgTiO3-CaTiO3 microwave ceramics

Materials Review, 2016,30(5):47-50.

[本文引用: 2]

WANG X, REN P R, REN D,et al.

B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength

Ceram. Int., 2020,47(3):3699-3705.

[本文引用: 2]

KANG H B, CHANG J Y, KOH K,et al.

High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators

ACS Appl. Mater. Inter., 2014,6(13):10576-10582

[本文引用: 2]

YANG B, BIAN J, WANG L, et al.

Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering

Phys. Chem. Chem. Phys., 2019,21(22):11697-11704.

[本文引用: 1]

GEOFFREY C ALLEN, IAN S BUTLER, COLIN KIRBY.

Characterization of ferrocene and (η 6-benzene) tricarbonylchromium complexes by X-ray photoelectron spectroscopy

Inorg. Chim. Acta, 1987,134:289-292.

[本文引用: 1]

YAN X D, ZHENG M P, ZHU M K, et al.

Enhanced electrical resistivity and mechanical properties in BCTZ-based composite ceramic

J. Adv. Dielect., 2019,9:1950036.

[本文引用: 1]

JIANG C B, MA C, LUO K H, et al.

Piezoelectric and ferroelectric properties of Na0.5Bi4.5Ti4O15-BaTiO3 composite ceramics with Mg doping

J. Adv. Dielect., 2019,9:1950005.

[本文引用: 1]

HU H, JIANG X P, CHEN C,et al.

Influence of Ce 3+ substitution on the structure and electrical characteristics of bismuth-layer Na0.5Bi8.5Ti7O27 ceramics

J. Inorg. Mater. , 2019,34(9):997-1003.

[本文引用: 1]

ROBERT D SHANNON, REINHARD X FISCHER.

Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides

Phys. Rev. B, 2006,73:235111.

[本文引用: 1]

YANG L T, KONG X, LI F,et al.

Perovskite lead-free dielectrics for energy storage applications

Prog. Mater. Sci., 2019,102(May):72-108.

[本文引用: 1]

WANG T, WANG Y H, YANG H B, et al.

Dielectric and energy storage property of BaTiO3-ZnNb2O6 ceramics

J. Inorg. Mater., 2019,35(4):431-438.

[本文引用: 1]

DU J H, LI Y, SUN N N, et al.

Dielectric, ferroelectric and high energy storage behavior of (1-x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics

Acta Phys. Sin., 2020,69(12):127703.

[本文引用: 1]

/