无机材料学报, 2022, 37(11): 1170-1180 DOI: 10.15541/jim20220158

综述

压电半导体纳米材料在声动力疗法中的应用进展

黄田,1,2,3, 赵运超1,2,3, 李琳琳,2,3,4

1.广西大学 化学化工学院, 南宁 530004

2.广西大学 物理科学与工程技术学院 纳米能源研究中心, 南宁 530004

3.中国科学院 北京纳米能源与系统研究所, 北京 101400

4.中国科学院大学 纳米科学与技术学院, 北京 100049

Piezoelectric Semiconductor Nanomaterials in Sonodynamic Therapy: a Review

HUANG Tian,1,2,3, ZHAO Yunchao1,2,3, LI Linlin,2,3,4

1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

2. Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China

3. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

4. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: 李琳琳, 研究员. E-mail:lilinlin@binn.cas.cn

收稿日期: 2022-03-21   修回日期: 2022-04-24   网络出版日期: 2022-06-16

基金资助: 国家自然科学基金(82072065)
国家自然科学基金(81471784)
中国科学院战略性先导科技专项(XDA16021103)
国家万人计划青年拔尖人才项目
中央高校基本科研业务费专项资金(E2EG6802X2)

Corresponding authors: LI Linlin, professor. E-mail:lilinlin@binn.cas.cn

Received: 2022-03-21   Revised: 2022-04-24   Online: 2022-06-16

Fund supported: National Natural Science Foundation of China(82072065)
National Natural Science Foundation of China(81471784)
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16021103)
National Youth Talent Support Program of China
Fundamental Research Funds for the Central Universities(E2EG6802X2)

作者简介 About authors

黄田(1996-), 女, 硕士研究生. E-mail: huangtian@binn.cas.cn

HUANG Tian (1996-), female, Master candidate. E-mail: huangtian@binn.cas.cn

摘要

随着纳米医学的发展, 利用纳米材料在外源超声波的刺激下催化产生过量的活性氧物种(Reactive Oxygen Species, ROS)以治疗疾病的方法, 被称为声动力疗法(Sonodynamic Therapy, SDT), 已引起人们的广泛关注。目前, 开发可用于SDT的高效声敏剂用于提高ROS产率, 仍然是当前研究和未来临床转化的最大挑战之一。近年来, 得益于压电电子学和压电光电子学的兴起, 基于压电半导体纳米材料的新型声敏剂在SDT中崭露头角, 显示出良好的应用前景。本文从压电半导体的结构出发, 介绍了压电半导体纳米材料应用于SDT的机理研究, 以及利用压电半导体纳米材料作为声敏剂在声动力学癌症治疗及相关抗菌性能方面所取得的研究进展。最后, 本文对该领域存在的问题以及未来的发展趋势进行了展望。

关键词: 压电半导体; 压电效应; 压电光电子学; 声动力疗法; 癌症; 综述

Abstract

With the development of nanomedicine, utilization of nanomaterials to catalyze the generation of excess reactive oxygen species (ROS) under exogenous ultrasound stimulation has attracted widespread attention for disease therapy, which is called sonodynamic therapy (SDT). Currently, development of high-efficiency sonosensitizers that can be used in SDT to improve ROS yield remains one of the most important challenges for current research and future clinical translation. Recently, benefited from the development of piezotronics and piezophototronics, novel sonosensitizers based on piezoelectric semiconductor nanomaterials have shown promising applications in SDT. In this review, we outline the structures and properties of piezoelectric semiconductors, and introduce the presumed mechanism of SDT with piezoelectric semiconductors. The newest research progresses on using piezoelectric semiconductor as sonosensitizer in cancer treatments and antibacterial applications are summarized. Finally, the existing challenges and future development trends in this field are proposed.

Keywords: piezoelectric semiconductor; piezoelectric effect; piezophototronics; sonodynamic therapy; cancer; review

PDF (20537KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄田, 赵运超, 李琳琳. 压电半导体纳米材料在声动力疗法中的应用进展. 无机材料学报, 2022, 37(11): 1170-1180 DOI:10.15541/jim20220158

HUANG Tian, ZHAO Yunchao, LI Linlin. Piezoelectric Semiconductor Nanomaterials in Sonodynamic Therapy: a Review. Journal of Inorganic Materials, 2022, 37(11): 1170-1180 DOI:10.15541/jim20220158

活性氧物种 (Reactive Oxygen Species, ROS) 是氧分子在电子转移过程中生成的具有高反应活性的含氧分子, 主要包括超氧阴离子(•O2)、过氧化氢(H2O2)、羟基自由基(•OH)、单线态氧(1O2)等[1]。当细胞长时间暴露于高浓度的ROS环境中时, 细胞的磷脂、蛋白质、DNA都会被氧化, 造成细胞氧化损伤并最终死亡[2-3]。随着纳米医学的不断发展, 利用纳米材料在内源或外源刺激下产生过量的ROS来实现治疗的策略引起了广泛关注, 这类治疗方式被统称为动力学疗法[4]。1989年, Umemura等[5]首次发现在超声(Ultrasound, US)作用下, 血卟啉显示出很高的细胞毒性, 可杀死癌细胞, 将其命名为声动力疗法(Sonodynamic Therapy, SDT)。之后更多研究表明, 很多纳米材料在US作用下可与周围O2反应产生过量的ROS, 导致细胞死亡[6]。SDT所必需的三要素是声敏剂、氧气和US激发。其中, 声敏剂包括有机声敏剂和无机声敏剂[7-8]。无机声敏剂主要为半导体纳米材料及其复合结构, 如TiO2纳米粒 子[9]、MnWOx纳米粒子[10]和PtCu3纳米笼[11]。这类纳米材料可被US激发, 诱导其电子和空穴分离, 然后在声敏剂表面发生氧化还原反应, 产生ROS。与有机声敏剂相比, 无机声敏剂具有更高的稳定性和生物安全性; 然而, 无机声敏剂的ROS生成效率相对较低, 这主要是电子和空穴的低效分离和快速复合共同导致的[12]

优化无机声敏剂中电子和空穴的分离, 同时抑制其快速复合, 对SDT的进一步发展具有重要意义。压电半导体 (Piezoelectric semiconductors) 是一类兼具半导体特性和压电特性的材料, 对光、电、力等外源刺激均有良好的响应性[13]。本文从压电半导体的结构和性能出发, 介绍了压电半导体纳米材料应用于SDT的潜在机理, 以及利用压电半导体纳米材料作为声敏剂在癌症治疗和抗菌等方面所取得的最新研究进展。同时, 对该领域存在的问题、挑战以及未来的发展趋势进行了展望。

1 压电半导体的结构特点

当压电半导体承受外应力时, 晶体发生极化, 两端产生符号相反的压电电荷 (束缚电荷) 及压电势, 即压电效应[14]。而压电效应又会影响半导体内部被激发的载流子的输运特性, 从而影响其催化等性能, 被称为压电电子学效应。

1.1 晶体结构的非对称性

从晶体学的角度看, 压电效应归因于晶体结构的非对称性[15]。研究最多的压电半导体具有钙钛矿结构, 属于立方晶系。钙钛矿的化学通式为ABO3, 其中A代表镧系元素或碱土金属, B代表过渡金属[16]。O和A都具有较大的离子半径, 形成立方密排结构, 而B具有较小的离子半径以填充八面体的中心空隙。作为典型的钙钛矿型压电材料, 锆钛酸铅由于其高压电活性、高机电耦合系数和低制造成本等优点, 已广泛应用于传感和能量收集等领域。然而锆钛酸铅中含有生物毒性的铅元素, 导致其在生物应用中受到限制。最近, 具有钙钛矿结构的无铅压电半导体在生物医学领域受到更多的关注, 例如具有良好生物相容性的钛酸钡(BaTiO3)已被证明是生物医学应用的候选者[17]。当BaTiO3受到外部机械应力时, 由于Ti4+在四方晶胞内发生位移, BaTiO3晶体表现出很强的极性(图1(a))。除BaTiO3外, 其它具有钙钛矿结构的无铅压电半导体纳米材料, 包括铁酸铋、铌酸锂、铌酸钾钠和碱金属钛酸铋等也在生物医学领域展现出应用潜能。

图1

图1   压电半导体的结构特点[24]

Fig. 1   Structural characteristics of piezoelectric semiconductors[24]

(a,b) Crystal structures of (a) perovskite BaTiO3 and (b) wurtzite ZnO; (c) Influence of stacking on the piezoelectric effect of MoS2 at crystal structure of (i) single-layer, (ii) 2H and (iii) 3R


另一种常见的压电材料结构是纤锌矿结构, 属于具有四面体配位的AB型六方晶系。在这种晶体中, A原子呈六方密排排列, B原子占据四面体空隙, 如氧化锌(ZnO)、氮化铝(AlN)、氮化镓(GaN)等[18-19]。以ZnO为例, 其晶体结构中Zn2+和O2−沿c轴逐层堆叠(图1(b)), 同时阳离子和阴离子的电荷中心相互重合, 晶体为非中心对称结构[20]。在外力作用下压电势的大小取决于杂原子掺杂密度和施加的应力等。

1.2 层间堆叠产生的非对称性

从宏观结构来看, 纳米尺度的压电半导体材料能够有效地穿越各种生理屏障, 如血管或细胞膜。对于压电半导体纳米材料介导的SDT, 纳米尺度还能提供更高的电子转移速率和更多的活性位点。一般来说, 根据维度不同可以分为零维(0D)、一维(1D)和二维(2D)压电半导体纳米材料。当压电材料甚至非压电材料减薄至2D结构时, 会在一个方向上失去中心对称性并表现出压电性[21]。以过渡金属二硫化物(Transition Metal Disulfides, TMDs)为例, 当TMDs作为堆叠的块体时, 它们是中心对称的, 其本体形式不具有压电性; 当减薄至单层时, 其反转中心消失, 产生压电性[22]。Wu等[23]研究表明, 单层的MoS2 (图1(c-i))具有强压电性, 在US作用下能够迅速降解有机染料。但是具有少层奇数原子层的MoS2薄片有压电活性, 而偶数层的薄片则没有压电活性, 这是因为偶数层薄片中反向堆叠的原子层形成了反转对称的结构(图1(c-ii))。而当原子层以相同方向排列成3R型时(图1(c-iii)), 压电效应会在层间累积, 即随着体积膨胀而增强[24]

2 压电半导体产生ROS的机理

在US的周期性作用下, 液体介质中的气体分子和小液滴经历了成核、生长、形成微气泡的过程 (图2(a)), 这种现象称为空化效应[25]。目前, 声敏剂在空化效应作用下产生ROS的机理仍没有定论, 以下介绍压电半导体在US作用下产生ROS的可能机理。

图2

图2   空化效应与声致发光[25]

Fig. 2   Cavitation effect and sonoluminescence (SL)[25]

(a) Schematic of cavitation effect with ultrasound; (b) Illustration of SL-excited photocatalysis


2.1 声致发光与光催化

当US的频率和强度足够高时, 空化效应表现出微气泡的快速增长和破裂, 最终能量会以冲击波和光的形式释放出来, 被称为声致发光(Sonoluminescence, SL)[26]。SL诱导的光催化反应被认为是压电半导体纳米材料用于SDT的可能机理之一。SL的波长在200~800 nm范围, 这不仅取决于介质分子的特性, 也取决于US的频率和强度[27]

根据半导体的能带理论, 当SL中光子的能量大于半导体的禁带宽度时(EEg), 压电半导体中的电子由价带(VB)激发到导带(CB), 导致电子-空穴对分离(图2(b)), 见反应式(1)。随后, VB上的空穴和CB上的电子分别迁移至压电半导体的表面, 引发氧化还原反应, 即光催化反应。当压电半导体CB的电位比O2/•O2的氧化还原电位(−0.33 V(vs. RHE))更负时, 才能催化O2产生•O2, 见反应式(2); 同样, 当VB的电位比H2O/•OH的氧化还原电位 (+2.01 V (vs. RHE))更正时, 在能量上才更有利于产生•OH, 见反应式(3)[28]。因此, 从半导体的角度, 用于SDT的压电半导体纳米材料的能带位置至少要包含O2/•O2和H2O/•OH氧化还原电位其中的一个, 才能通过催化反应产生ROS[29]

$\text{Piezoelectric semiconductor}\overset{\text{SL}}{\mathop{\to }}\,{{e}^{-}}+{{h}^{+}}$
${{e}^{-}}+{{\text{O}}_{2}}\to \centerdot \text{O}_{2}^{-}$
${{h}^{+}}+{{\text{H}}_{2}}\text{O}\to \centerdot \text{OH}$

2.2 压电催化

压电效应是皮埃尔·居里和雅克·居里兄弟于1880年发现的[30]。在机械振动的作用下, 压电材料表面会积累正负电荷, 发生催化反应, 被称为压电催化。和光催化反应不同, 压电催化是基于机械力诱导的电荷, 而不是光激发的电荷。

在极化的压电半导体表面, 束缚电荷与屏蔽电荷处于平衡状态, 因此材料整体上呈现电中性(图3(a))。在一定频率和强度的US作用下, 微气泡发生破裂并向其周围释放出超高压(可达到108 MPa), 施加到附近的压电半导体。此时, 基于压电效应的压缩应力(负应变)使材料极化强度减小, 导致电荷载流子在其表面重新分布, 并从材料表面释放出多余的屏蔽电荷; 然后多余的屏蔽电荷分散到周围的溶液中, 形成自由电荷, 见反应式(4); 最终自由电荷与环境中的H2O或O2反应产生•OH或•O2 (图3(b)), 见反应式(5, 6), 其中q和q+分别表示负电荷和正电荷)[31,32]。当施加的压缩应力减小时(正应变), 材料的极化增加, 材料表面吸附周围的自由电荷来补充屏蔽电荷, 以平衡由压电效应产生的束缚电荷。同时, 电解液中与吸附电荷极性相反的电荷将再次参与氧化还原反应, 连续产生ROS(图3(d))[32]。因此, 在交变应力和电解质环境中的压电半导体纳米材料可以连续提供电荷产生•OH或•O2用于SDT。压电催化的反应过程可以表示为:

$\text{Piezoelectric semiconductor}\overset{US}{\mathop{\to }}\,{{q}^{-}}+{{q}^{+}}$
${{q}^{-}}+{{\text{O}}_{2}}\to \centerdot \text{O}_{2}^{-}$
$\mathrm{q}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \cdot \mathrm{OH}$

图3

图3   压电催化示意图[32]

Fig. 3   Schematic of piezocatalysis[32]

(a) Original electrostatic balance state of a poled piezoelectric material; (b) Charge release and ROS production under stress; (c) Modified electrostatic balance state under maximum stress; (d) Adsorption of charges from the surrounding electrolyte under reduced stress, and the opposite charges in the electrolyte are involved in ROS production


2.3 压电光电子学效应

压电半导体中压电极化和半导体特性的耦合也产生了协同效应。王中林教授[33]于2010年首次提出了压电光电子学的概念, 其主要通过压电电荷/压电势来调控光生载流子的分离、传输和复合, 为调节表面的氧化还原反应提供了可行的方法。

当受到光激发的压电半导体和电解质溶液相接触时, 光生载流子通过固−液界面向电解质溶液中迁移, 最终导致压电半导体的能带向上弯曲(图4(a))。当向压电半导体施加US时, 由压电效应产生的极化电荷会自发形成内建电场。具有正极化电荷的表面能带会向下弯曲, 因此与单纯的光催化相比, 压电半导体表面处于更高的电位。这种情况促进了电子向电解质溶液中迁移(还原能力略有降低), 抑制了空穴向电解质溶液迁移(氧化能力增强)[34]。类似地, 含有负极化电荷的表面能带会向上弯曲, 进一步抑制电子向电解质溶液迁移 (还原能力增强), 促进空穴迁移 (氧化能力减弱)。因此, 借助压电光电子学效应, 通过施加一定频率和强度的US, 某些在能量(能带结构)上不利于•OH或•O2产生的压电半导体纳米材料也可以催化ROS的产生[35]

图4

图4   压电光电子学效应对载流子迁移的影响[34]

Fig. 4   Influence of piezo-phototronic effect on carrier migration[34]

(a) Semiconductor-electrolyte; (b) Metal-semiconductor; (c) Type-II; (d) Z-scheme CB: Conduction band; VB: Valence band; SC: Semiconductor


此外, 基于半导体和压电理论, 通过在压电半导体上构建异质结构来调控载流子的迁移行为也逐渐受到研究者的重视。

2.3.1 金属-压电半导体异质结

当压电半导体与功函数较大的金属接触时, 压电半导体中的自由电子流向金属, 并导致压电半导体的能带向上弯曲, 形成肖特基势垒。通常, 只有能量超过肖特基势垒的光生电子才能跨越界面参与表面还原反应。对于压电半导体来说, 肖特基势垒的高度可以通过压电效应进行调节。

若机械力(如US) 诱导压电半导体在界面处产生了正极化电荷, 则界面处的自由电子被吸引, 从而使能带和肖特基势垒降低, 有利于电子迁移并促进还原反应(图4(b))。反之, 当US诱导界面处产生负极化电荷时, 界面处的自由电子被排斥, 肖特基势垒升高, 导致电子的传输性能降低, 进而抑制还原反应。

2.3.2 II型异质结和Z型异质结

当非压电半导体(Semiconductor I, SC I)与压电半导体(Semiconductor II, SC II)形成II型异质结时, 机械力诱导的内置电场对调节界面电荷的迁移起到了决定性的作用。如图4(c), 当施加在SC II上的机械力使界面处产生正极化电荷时, 附近的一部分自由电子会被吸引至结区, 并导致能带向下弯曲, 阻碍了载流子向SC I迁移[36]。而当界面处引入负极化电荷时, 自由电子被排斥, 导致能带向上弯曲, 增强了载流子向SC I的传输。

对于典型的Z型异质结, SC I的导带和价带能级比SC II的更高, 并且具有更高的费米能级。当两种半导体相互接触时, 界面处的自由电子从SC I迁移至SC II, 此时界面处的电场方向从左向右(图4(d))[37]。在光激发下, SC I价带上的空穴和SC II导带上的电子发生复合; 同时SC I电子和SC II空穴的复合被抑制, 保留了高反应活性的还原电子和氧化空穴[38]。当施加机械力诱导压电半导体(SC II)在界面处产生正极化电荷时, SC II的能带会进一步向下弯曲, 从而加速SC I上空穴和SC II上电子的复合(图4(d))。同理, 机械振动在界面处诱导的负极化电荷会抑制Z型异质结中载流子的迁移。

3 压电半导体纳米材料在SDT中的应用

超声介导的SDT具有非侵入性和组织穿透深的优势, 在生物医学领域引起了极大关注。介绍压电半导体纳米材料作为声敏剂在SDT方面的最新研究进展之前, 首先对SDT在动物实验中所使用的超声参数 (频率、功率、处理时间等) 进行系统总结(表1)。为了抑制超声热效应对正常细胞的杀伤, 同时降低小鼠痛苦, 在SDT研究的动物实验中, 设置的超声频率一般不高于1 MHz, 功率一般不高于1.5 W/cm2, 占空比一般为50%, 单次处理时间不宜超过15 min(表1)。

表1   压电半导体纳米材料用于SDT的动物实验中所使用的超声激发装置的相关参数

Table 1  Parameters of ultrasonic excitation devices used in animal experiments of sonodynamic therapy with piezoelectric semiconductor nanomaterials

ApplicationNanomaterialFrequency/MHzPower/(W·cm-2)Duty ratio/%Duration/minRef.
Cancer treatmentBP11.5-10 (4 times)[39]
T-BTO11.05010 (3 times)[40]
Bi2MoO60.043.0505 (3 times)[41]
Au@BP12.0402.5 (4 times)[42]
D-ZnOx:Gd11.050-[43]
AntibacteriaHNTM-MoS211.55015 (Twice)[45]
Au@BTO11.5503 (Once)[46]

新窗口打开| 下载CSV


3.1 癌症治疗

在压电半导体纳米材料用于SDT的研究中, 研究人员发现超声不仅能通过空化效应和压电效应, 激活深部肿瘤组织中的压电半导体纳米材料产生具有细胞毒性的ROS, 直接对肿瘤细胞造成不可逆的损伤, 还能通过能带倾斜调控压电半导体的氧化还原能力。

Li等[39]研究了黑磷(Black phosphorus, BP)在US作用下对肿瘤细胞的毒性。BP的固有禁带宽度约为0.84 eV, 其CB和VB的电位分别为−0.39和 0.45 V在能量上仅有利于•O2-的产生。在US作用下, 压电效应导致了BP的能带倾斜, 使VB比H2O/•OH的氧化还原电位更正, 从而有利于•OH的产生(图5(a))。通过9,10-蒽二基-双(亚甲基)-二丙二酸 (ABDA) 和对苯二甲酸(PTA)对ROS的检测, 证明BP纳米片在US作用下的确产生了•O2-和•OH。用2′,7′-二氯二氢荧光素二乙酸酯(DCFH-DA) 检测细胞内ROS水平, 结果显示ROS的产生并非完全氧依赖性, 这使BP克服肿瘤微环境的乏氧状态成为可能。Zhu等[40]研究了钛酸钡(BaTiO3)纳米颗粒的压电活性, 在US振动下, 其可以发生极化并建立动态内部电场, 进而使电子和空穴向不同的表面迁移, 并发生压电催化反应, 提高ROS产率。理论上, BaTiO3纳米颗粒禁带宽度为2.56 eV, 在能带位置上不利于•OH和•O2的产生。在US刺激下, Ti4+偏移构成的内部电场可以增强表面上电子和空穴的转移和积累, 使能带倾斜以便产生•OH和•O2 (图5(b))[40]

图5

图5   压电半导体纳米材料超声条件下的能带倾斜增强SDT抗肿瘤应用[39-41]

Fig. 5   Anti-tumor application of piezoelectric semiconductor nanomaterials in SDT enhanced by band tilt under ultrasound irradiation[39-41]

(a, b)Band structures of (a) black phosphorus (BP) nanosheets[39] and (b) T-BaTiO3 nanoparticles[40]; (c) Bi2MoO6 nanorods (BMO NRs) and GSH-activated BMO NRs (GBMO NRs) and their ROS generation under ultrasonic irradiation[41];CB: Conduction band; VB: Valence band; RHE: Relative hyedrogen electrode; NHE: Normal hydrogen electrode


Dong等[41]基于肿瘤微环境中过量存在的谷胱甘肽 (Glutathione, GSH), 提出了GSH增强的SDT。他们通过水热法合成了压电活性的Bi2MoO6纳米棒 (BMO NRs), 在癌细胞中可以消耗内源性GSH, 破坏细胞氧化还原稳态; 同时在BMO NRs表面产生氧空位, 抑制电子-空穴复合, 从而提高SDT中ROS的产率。图5(c)显示消耗谷胱甘肽(GSH)后, BMO的本征能带发生偏移, 随后在超声作用下, BMO NRs的正负电荷向不同侧迁移, 同时发生内部极化, 导致能带弯曲, 减小了带边与O2/•O2 (−0.33 V)和H2O/•OH (+2.10 V)氧化还原电位之间的距离, 有利于电子和空穴的分离, 从而促进ROS的生成。在细胞实验中, 通过紫罗兰染色和DCFH-DA染色证实了BMO NRs具有出色的GSH消耗和ROS产生的能力。

在空间结构上, 1D 和2D压电半导体纳米材料是SDT的理想材料, 因为其几何结构和尺寸有利于通过更高的压电系数和更大的弹性形变来调节肖特基势垒高度和产生更高的压电势, 因此只需施加微小的物理量刺激。此外, 由于1D、2D纳米材料中的大多数原子位于表面, 可以通过表面改性显著提升其催化性能, 因此研究人员通过在压电半导体纳米材料上构建异质结或引入缺陷来进一步提高SDT效率。Ouyang等[42]以BP为基础制备了二维半导体声敏剂Au@BP纳米杂化物, 用于高效催化产生1O2, 在小鼠乳腺癌治疗中获得成功。BP纳米片是二维半导体, 其层状结构有利于与O2相互作用, 同时BP具有高效的单重态-三重态交叉和较长的激发三重态寿命(高达 100 μs), 这有助于它们与氧分子反应生成1O2。使用气体剥离法合成BP纳米片, 在超声条件下, 进一步原位生长Au纳米颗粒。在Au@BP纳米杂化的形成过程中, BP纳米片具有双重作用, 既可作为Au NPs形成的还原剂, 又可作为Au NPs在BP表面组装的稳定剂。获得的Au@BP 复合纳米片暴露在超声波下时, 电子从VB被激发到CB, 在VB上留下空穴。由于BP (−3.9 eV)的费米能级高于Au (−5.1 eV), 电子可以从BP转移到Au, 从而形成肖特基势垒, 抑制电子与空穴复合, 电子进一步转移, 与周围的氧气反应, 生成1O2 (图6(a-i))。使用单线态氧检测绿 (Singlet Oxygen Sensor Green, SOSG)检测1O2, 发现Au NPs的负载使BP在超声作用下1O2产物增加(图6(a-ii))。随后在细胞实验中使用DCFH-DA为探针检测了Au@BP的细胞内声动力活性, 与单独用超声波或单独Au@BP纳米杂化处理的细胞相比, 在超声作用下, Au@BP处理后的细胞内荧光强度增加了6.6倍 (图6(a-iii)), 说明Au@BP具有更高的SDT效率。此外, Liu等[43]采用惰性气体脱氧法制备了富含缺陷的钆 (Gd) 掺杂氧化锌(D-ZnOx:Gd)半导体声敏剂。

图6

图6   在压电半导体纳米材料上构建异质结或引入缺陷来提高SDT效率[42-43]

Fig. 6   Efficiency of SDT improved by constructing heterojunction or introducing defects on piezoelectric semiconductor nanomaterials[42-43]

(a) i: Schematic diagram of the preparation and SDT treatment with Au@BP, ii: Time-dependent fluorescence of singlet oxygen sensor green (SOSG) under ultrasound irradiation, iii: Intracellular ROS level after different treatments[42] with (1-6) indicate blank, ultrasound, BP nanosheets, Au@BP nanohybrids, BP nanosheets with ultrasound, and Au@BP nanohybrids with ultrasound, respectively; (b) i: Schematic illustration of D-ZnOx:Gd under ultrasound irradiation, ii: Strucure of defect-free ZnO and defect-rich D-ZnOx:Gd and their adsorption energies with O2 and H2O [43] BP: Black phosphorus; CB: Conduction band; VB: Valence band


与无缺陷的ZnO相比, D-ZnOx:Gd中丰富的氧缺陷可作为电子的俘获位点, 促进超声刺激时电子和空穴的分离 (图6(b-i))。此外, O缺陷使D-ZnOx:Gd与底物分子O2和H2O的相互作用分别增强了0.15和0.32 eV, 即具有更强的吸附能力, 这将进一步增强 ROS 的产生能力, 从而显著增强SDT(图6(b-ii))。与先前报道的声敏剂如有机卟啉分子四 (4-羧基苯基) 卟啉 (TCPP) 和无机TiO2纳米颗粒相比, D-ZnOx:Gd生成ROS的效率更高。同时, 引入缺陷也使D-ZnOx:Gd在近红外生物窗中具有更强的吸收, 提高其在近红外激光照射下的光热转化效率, 从而进一步提高了肿瘤杀伤活性。

3.2 抗菌

作为一项新技术, SDT在抗菌和感染性疾病治疗方面也显示出独特的应用潜力。在US刺激下, 压电半导体纳米材料可以催化产生高毒性的ROS, 杀死细菌而最大限度地避免耐药性的产生。

Masimukku等[44]使用水热法合成了二硫化钨纳米花(WS2 NF), 并将其用于抗菌。高分辨透射电镜 (HRTEM)照片显示WS2 NFs具有单层或少层结构, 压电显微镜和三维压电电位图像显示WS2 NFs具有显著的压电势(图7(a-i, ii))。在US刺激下, WS2 NFs发生极化, 促使电子和空穴向相反方向迁移至材料表面, 并催化产生ROS。图7(a-iii)显示电子自旋共振(ESR)测定活性氧, 5,5-二甲基-1-吡咯啉-N-氧化物捕获•OH,2,2,6,6-四甲基哌啶 (2,2,6,6-Tetramethylpiperidine, TEMP) 捕获1O2。在US作用下, 压电WS2 NFs在60 min内对大肠杆菌(E. coli)的杀伤率高达99.99% (图7(a-iv))。Feng等[45]将压电半导体纳米材料用于骨髓炎的SDT中。通过静电相互作用将具有压电性的MoS2纳米片镶嵌在卟啉基中空金属-有机框架 (Hollow metal-organic framework, HNTM) 表面, 通过US诱导MoS2压电极化促进HNTM-MoS2异质界面的电荷转移, 增加了活性氧 (ROS) 的生成, 成功在鼠骨髓中杀灭耐甲氧西林的金黄色葡萄球菌 (Methicillin-resistant S. aureus, MRSA), 消除了其对骨组织的感染, 抑制了炎症 (图7(b))。

图7

图7   压电半导体纳米材料在抗菌中的应用[44-45]

Fig. 7   Application of piezoelectric semiconductor nanomaterials in anti-bacterial[44-45]

(a) i: HRTEM image of WS2 NFs, ii: Piezo force microscopy image and 3D piezoelectric potential image of WS2 NFs, iii: •OH and 1O2 were measured by electron spin-resonance spectroscopy (EPR), iv: Antibacterial properties of WS2 NFs against E. coli after ultrasound treatment; (b) Sonodynamic mechanism of porphyrin-based hollow metal-organic framework-MoS2 (HNTM-MoS2) and therapy on osteomyelitis; MRSA: Methicillin-resistant S. aureus; LUMO: Lowest unoccupied molecular orbital; HOMO: Highest occupied molecular orbital; HNTM: Hollow metal-organic framework; RBC: Red blood cell; iNOS: Inducible nitric oxide synthase; TGF-β: Transforming growth factor-β


与肿瘤治疗类似, 构建异质结也能够增强压电半导体纳米材料在SDT抗菌中的性能。Wu等[46]构建了负载Au NPs的钛酸钡压电声敏剂Au@BaTiO3 (Au@BTO)。Au@BTO具有肖特基异质结结构, 在US作用下可以促进电子空穴的分离, 提高SDT效率(图8(a))。Au@BTO在超声处理4 min后对大肠杆菌和金黄色葡萄球菌的抑菌率分别达到99.23%和99.94%, 显示出卓越的SDT抗菌活性 (图8(b))。此外, 在小鼠金黄色葡萄球菌皮肤感染创口模型中, Au@BTO也显示出良好的SDT效果。而且, 声动力过程生成的ROS除了具有显著的抗菌活性, 同时也促进了动物细胞的增殖和迁移 (图8(d)), 可以明显加快伤口愈合 (图8(c))。这些研究拓宽了压电半导体纳米材料在SDT生物医学领域的应用前景。

图8

图8   Au@BTO用于抗菌和创口修复[46]

Fig. 8   Au@BTO for bacterial elimination and wound healing[46]

(a) Mechanism of sonodynamic therapy using Au@BTO under ultrasound irradiation; (b) Sonodynamic antibacterial effect of Au@BTO against E. coli and S. aureus; (c) Representative photographs of mouse S. aureus infected wounds at different time (d) Representative images of NIH-3T3 cell migration; NHE: Normal hydrogen electrode; US: Ultrasound


4 结束语

由于高效声敏剂的匮乏, 包括无机声敏剂载流子快速复合等问题, 严重阻碍了SDT的进一步发展。本文从压电半导体的结构出发, 总结了压电半导体纳米材料作为声敏剂用于SDT的可能机理, 综述了近几年压电半导体纳米材料用于SDT的最新研究进展, 主要介绍了其在癌症治疗和抗菌方面的应用。尽管压电半导体纳米材料作为声敏剂已经在SDT领域取得了一定的进展, 但仍有一些挑战需要解决, 比如:1) 许多压电半导体材料含有重金属元素, 因而生物安全性值得关注, 甚至需要寻找替代元素; 2) 需进一步探索如何从材料和外源US刺激的角度, 提高材料的压电响应; 3) 需要建立尺寸可控的纳米压电半导体的合成技术。此外, 目前很多工作还缺少压电半导体纳米材料用于SDT的相关机理探索和对压电效应的深入表征及讨论。

就如何进一步促进ROS产生的问题, 笔者认为:首先, 选用的材料能带位置应尽量靠近O2/•O2和H2O/•OH的氧化还原电位, 这样较小的能带弯曲也会促进ROS生成; 其次, 掺杂和改性能增强压电响应性; 再次, 构建空位可以形成电子势阱, 抑制电子和空穴的复合; 最后, 可以通过构建异质结来促进电子和空穴的分离、传输, 并防止其快速复合。

总之, 未来的相关研究不仅对拓展压电半导体纳米材料的功能应用具有重要意义, 还将对声动力学疗法的发展和临床转化有潜在价值。

参考文献

BODEGA G, ALIQUE M, PUEBLA L, et al.

Microvesicles: ROS scavengers and ROS producers

Journal of Extracellular Vesicles, 2019, 8(1): 1626654-10.

DOI      URL     [本文引用: 1]

CAO Z, LI D, WANG J, et al.

Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy

Acta Biomaterialia, 2021, 130: 17-31.

[本文引用: 1]

HE Y, HUA LIU S, YIN J, et al.

Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers

Coordination Chemistry Reviews, 2021, 429: 213610-21.

[本文引用: 1]

YANG B, CHEN Y, SHI J.

Reactive oxygen species (ROS)-based nanomedicine

Chemical Reviews, 2019, 119(8): 4881-4985.

DOI      PMID      [本文引用: 1]

Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. The intrinsic biochemical properties of ROS, which underlie the mechanisms necessary for the growth, fitness, or aging of living organisms, have been driving researchers to take full advantage of these active chemical species for contributing to medical advances. Thanks to the remarkable advances in nanotechnology, great varieties of nanomaterials with unique ROS-regulating properties have been explored to guide the temporospatial dynamic behaviors of ROS in biological milieu, which contributes to the emergence of a new-generation therapeutic methodology, i.e., nanomaterial-guided in vivo ROS evolution for therapy. The interdependent relationship between ROS and their corresponding chemistry, biology, and nanotherapy leads us to propose the concept of "ROS science", which is believed to be an emerging scientific discipline that studies the chemical mechanisms, biological effects, and nanotherapeutic applications of ROS. In this review, state-of-art studies concerning recent progresses on ROS-based nanotherapies have been summarized in detail, with an emphasis on underlying material chemistry of nanomaterials by which ROS are generated or scavenged for improved therapeutic outcomes. Furthermore, key scientific issues in the evolution of ROS-based cross-disciplinary fields have also been discussed, aiming to unlock the innate powers of ROS for optimized therapeutic efficacies. We expect that our demonstration on this evolving field will be beneficial to the further development of ROS-based fundamental researches and clinical applications.

YUMITA N, NISHIGAKI R, UMEMURA K, et al.

Hematoporphy- rin as a sensitizer of cell-damaging effect of ultrasound

Japanese Journal of Cancer Research, 1989, 80(3): 219-222.

DOI      URL     [本文引用: 1]

LIU R, ZHANG Q, LANG Y, et al.

Sonodynamic therapy, a treatment developing from photodynamic therapy

Photodiagnosis and Photodynamic Therapy, 2017, 19: 159-166.

[本文引用: 1]

WANG H, PAN X, WANG X, et al.

Degradable carbon-silica nano-composite with immunoadjuvant property for dual-modality photother-mal/photodynamic therapy

ACS Nano, 2020, 14(3): 2847-2859.

DOI      URL     [本文引用: 1]

YAO S, ZHAO X, WAN X, et al.

π-π conjugation promoted nano-catalysis for cancer therapy based on a covalent organic framework

Materials Horizons, 2021, 8(12): 3457-3467.

DOI      URL     [本文引用: 1]

DEEPAGAN V G, YOU D G, UM W, et al.

Long-circulating Au- TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer

Nano Letters, 2016, 16(10): 6257-6264.

DOI      URL     [本文引用: 1]

GONG F, CHENG L, YANG N, et al.

Ultrasmall oxygen-deficient bimetallic oxide MnWOx nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy

Advanced Materials, 2019, 31(23): 1900730-9.

DOI      URL     [本文引用: 1]

ZHONG X, WANG X, CHENG L, et al.

GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy

Advanced Functional Materials, 2020, 30(4): 1907954-12.

DOI      URL     [本文引用: 1]

ZHANG H, PAN X, WU Q, et al.

Manganese carbonate nanoparti-cles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy

Exploration, 2021, 1(2): 20210010-12.

DOI      URL     [本文引用: 1]

ZHU L, WANG Z L.

Recent progress in piezo-phototronic effect enhanced solar cells

Advanced Functional Materials, 2019, 29(41): 1808214-18.

DOI      URL     [本文引用: 1]

CHORSI M T, CURRY E J, CHORSI H T, et al.

Piezoelectric biomaterials for sensors and actuators

Advanced Materials, 2019, 31(1): 1802084-15.

DOI      URL     [本文引用: 1]

XU Q, GAO X, ZHAO S, et al.

Construction of bio-piezoelectric platforms: from structures and synthesis to applications

Advanced Materials, 2021, 33(27): 2008452-28.

DOI      URL     [本文引用: 1]

WANG W, XU M, XU X, et al.

Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting

Angewandte Chemie International Edition, 2020, 59(1): 136-152.

DOI      URL     [本文引用: 1]

YU X, WANG S, ZHANG X, et al.

Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing

Nano Energy, 2018, 46: 29-38.

[本文引用: 1]

MANNA S, TALLEY K R, GORAI P, et al.

Enhanced piezoelectric response of AlN via CrN alloying

Physical Review Applied, 2018, 9(3): 34026-15.

DOI      URL     [本文引用: 1]

WANG Z L.

Progress in piezotronics and piezo-phototronics

Advanced Materials, 2012, 24(34): 4632-4646.

DOI      URL     [本文引用: 1]

PANDEY R K, DUTTA J, BRAHMA S, et al.

Review on ZnO- based piezotronics and piezoelectric nanogenerators: aspects of pie-zopotential and screening effect

Journal of Physics: Materials, 2021, 4: 44011-22.

[本文引用: 1]

GHASEMIAN M B, DAENEKE T, SHAHRBABAKI Z, et al.

Peculiar piezoelectricity of atomically thin planar structures

Nanoscale, 2020, 12(5): 2875-2901.

DOI      PMID      [本文引用: 1]

The emergence of piezoelectricity in two-dimensional (2D) materials has represented a milestone towards employing low-dimensional structures for future technologies. 2D piezoelectric materials possess unique and unprecedented characteristics that cannot be found in other morphologies; therefore, the applications of piezoelectricity can be substantially extended. By reducing the thickness into the 2D realm, piezoelectricity might be induced in otherwise non-piezoelectric materials. The origin of the enhanced piezoelectricity in such thin planes is attributed to the loss of centrosymmetry, altered carrier concentration, and change in local polarization and can be efficiently tailored via surface modifications. Access to such materials is important from a fundamental research point of view, to observe the extraordinary interactions between free charge carriers, phonons and photons, and also with respect to device development, for which planar structures provide the required compatibility with the large-scale fabrication technologies of integrated circuits. The existence of piezoelectricity in 2D materials presents great opportunities for applications in various fields of electronics, optoelectronics, energy harvesting, sensors, actuators and biotechnology. Additionally, 2D flexible nanostructures with superior piezoelectric properties are distinctive candidates for integration into nano-scale electromechanical systems. Here we fundamentally review the state of the art of 2D piezoelectric materials from both experimental and theoretical aspects and report the recent achievements in the synthesis, characterization and applications of these materials.

HINCHET R, KHAN U, FALCONI C, et al.

Piezoelectric properties in two-dimensional materials: simulations and experiments

Materials Today, 2018, 21(6): 611-630.

DOI      URL     [本文引用: 1]

WU J M.

Piezo-catalytic effect on the enhancement of the ultra- high degradation activity in the dark by single- and few-layers MoS2 nanoflowers

Advanced Matericals, 2016, 28(19): 3718-3725.

[本文引用: 1]

WANG Z L, WILLATZEN M.

Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures

Nano Energy, 2019, 56: 512-515.

[本文引用: 3]

UM W, E K P K, LEE J, et al.

Recent advances in nanomaterial- based augmented sonodynamic therapy of cancer

Chemical Communications, 2021, 57(23): 2854-2866.

DOI      URL     [本文引用: 3]

XU H, SUSLICK K S.

Molecular emission and temperature meas- urements from single-bubble sonoluminescence

Physical Review Letters, 2010, 104(24): 244301-4.

DOI      URL     [本文引用: 1]

DIDENKO Y T, SUSLICK K S.

The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation

Nature, 2002, 418(6896): 394-397.

DOI      URL     [本文引用: 1]

NOSAKA Y, NOSAKA A Y.

Generation and detection of reactive oxygen species in photocatalysis

Chemical Reviews, 2017, 117(17): 11302-11336.

DOI      PMID      [本文引用: 1]

The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (O), hydrogen peroxide (HO), singlet oxygen (O), and hydroxyl radical (OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO. However, besides TiO some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed OH could be regarded as trapped holes, which are involved in a rapid adsorption-desorption equilibrium at the TiO-solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas OH in solution would exert the reactivity mainly for nonadsorbed reactants. The most probable routes of generating intrinsic ROS at the surfaces of two polymorphs of TiO, anatase and rutile, were discussed along with some plausible rational reaction processes. In addition to the four major ROS, three ROS, that is organic peroxides, ozone, and nitric oxide, which are less common in photocatalysis are also briefly reviewed.

LI Y, XIE J, UM W, et al.

Sono/photodynamic nanomedicine-elicited cancer immunotherapy

Advanced Functional Materials, 2021, 31(12): 2008061-25.

DOI      URL     [本文引用: 1]

CURIE J, CURIE P.

Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées

Bulletin de la Société Chimique de France, 1880, 91: 294-295.

[本文引用: 1]

WU J, MAO W, WU Z, et al.

Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation

Nanoscale, 2016, 8(13): 7343-7350.

DOI      URL     [本文引用: 1]

WANG Y, WEN X, JIA Y, et al.

Piezo-catalysis for nondestructive tooth whitening

Nature Communications, 2020, 11(1): 1328-11.

DOI      PMID      [本文引用: 4]

The increasing demand for a whiter smile has resulted in an increased popularity for tooth whitening procedures. The most classic hydrogen peroxide-based whitening agents are effective, but can lead to enamel demineralization, gingival irritation, or cytotoxicity. Furthermore, these techniques are excessively time-consuming. Here, we report a nondestructive, harmless and convenient tooth whitening strategy based on a piezo-catalysis effect realized by replacement of abrasives traditionally used in toothpaste with piezoelectric particles. Degradation of organic dyes via piezo-catalysis of BaTiO (BTO) nanoparticles was performed under ultrasonic vibration to simulate daily tooth brushing. Teeth stained with black tea, blueberry juice, wine or a combination thereof can be notably whitened by the poled BTO turbid liquid after vibration for 3 h. A similar treatment using unpoled or cubic BTO show negligible tooth whitening effect. Furthermore, the BTO nanoparticle-based piezo-catalysis tooth whitening procedure exhibits remarkably less damage to both enamel and biological cells.

WANG Z L.

Piezopotential gated nanowire devices: piezotronics and piezo-phototronics

Nano Today, 2010, 5(6): 540-552.

DOI      URL     [本文引用: 1]

PAN L, SUN S, CHEN Y, et al.

Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis

Advanced Energy Materials, 2020, 10(15): 2000214-25.

DOI      URL     [本文引用: 3]

KANG Y, LEI L, ZHU C, et al.

Piezo-photocatalytic effect mediat- ing reactive oxygen species burst for cancer catalytic therapy

Materials Horizons, 2021, 8(8): 2273-2285.

DOI      URL     [本文引用: 1]

ZHU L, WANG Z L.

Progress in piezotronics and piezo-phototronics of quantum materials

Journal of Physics D: Applied Physics, 2019, 52(34): 343001-25.

DOI      URL     [本文引用: 1]

ZHOU Z, YUAN S, WANG J.

Theoretical progress on direct z-scheme photocatalysis of two-dimensional heterostructures

Frontiers of Physics, 2021, 16(4): 1-9.

[本文引用: 1]

ZHOU P, YU J, JARONIEC M.

All-solid-state z-scheme photocata- lytic systems

Advanced Materials, 2014, 26(29): 4920-4935.

DOI      URL     [本文引用: 1]

LI Z, ZHANG T, FAN F, et al.

Piezoelectric materials as sono- dynamic sensitizers to safely ablate tumors: a case study using black phosphorus

Journal of Physical Chemistry Letters, 2020, 11(4): 1228-1238.

DOI      URL     [本文引用: 5]

ZHU P, CHEN Y, SHI J.

Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity

Advanced Materials, 2020, 32(29): 2001976-8.

DOI      URL     [本文引用: 6]

DONG Y, DONG S, LIU B, et al.

2D piezoelectric Bi2MoO6nano- ribbons for GSH-enhanced sonodynamic therapy

Advanced Materials, 2021, 33(51): 2106838-11.

DOI      URL     [本文引用: 5]

OUYANG J, DENG L, CHEN W, et al.

Two dimensional semicon- ductors for ultrasound-mediated cancer therapy: the case of black phos-phorus nanosheets

Chemical Communications, 2018, 54(23): 2874-2877.

DOI      URL     [本文引用: 5]

LIU Y, WANG Y, ZHEN W, et al.

Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation

Biomaterials, 2020, 251: 120075-9.

[本文引用: 4]

MASIMUKKU S, HU Y C, LIN Z H, et al.

High efficient degradation of dye molecules by PDMS embedded abundant singlelayer tungsten disulfide and their antibacterial performance

Nano Energy, 2018, 46: 338-346.

[本文引用: 3]

FENG X, MA L, LEI J, et al.

Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomye-litis

ACS Nano, 2022, 16(2): 2546-2557.

DOI      URL     [本文引用: 4]

WU M, ZHANG Z, LIU Z, et al.

Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing

Nano Today, 2021, 37: 101104-12.

[本文引用: 4]

/