基于氧化钨和氧化镍的电致变色器件研究进展
Electrochromic Devices Based on Tungsten Oxide and Nickel Oxide: a Review
通讯作者: 刁训刚, 教授. E-mail:diaoxg@buaa.edu.cn
收稿日期: 2020-08-24 修回日期: 2020-09-23 网络出版日期: 2021-02-20
| 基金资助: |
|
Corresponding authors: DIAO Xungang, professor. E-mail:diaoxg@buaa.edu.cn
Received: 2020-08-24 Revised: 2020-09-23 Online: 2021-02-20
| Fund supported: |
|
电致变色器件(Electrochromic Devices, ECDs)是一种颜色变化受电压调控的智能装置, 具有工作温度范围宽、光学对比度高、可逆双稳态性能好、驱动电压低和能耗低等优点, 在智能动态调光窗、全彩色电子显示屏、防眩光护目镜、自适应双隐身伪装以及可视化储能等领域展现出了巨大的应用潜力。阴极着色材料氧化钨(WO3)和阳极着色材料氧化镍(NiO)是两种被广泛研究的无机电致变色材料, 由WO3和NiO薄膜组成的互补型电致变色器件在大规模智能窗的应用中具有极高的商业价值。改善电致变色器件的综合性能如光学调制范围、响应速度、循环寿命和耐候性等问题一直备受关注。本文围绕互补型电致变色器件的结构组成, 综述了基于WO3和NiO的电致变色全器件的近期研究进展。首先分别阐述了WO3和NiO薄膜的电致变色机理和衰退机制, 讨论了改进制备工艺、元素掺杂改性、设计纳米结构和引入复合材料这四种薄膜性能优化策略的作用和最新研究进展, 其次, 按照器件的组成成分和结构设计介绍了互补型电致变色全器件的分类体系, 总结了各组分材料的选择和器件结构对器件综合性能的影响, 最后对电致变色器件的应用前景和发展趋势进行了展望。
关键词:
Electrochromic devices (ECDs) are the intelligent devices change color by applying electric potential, with the advantages of wide working temperature, high optical contrast, good reversible bistability, low driving voltage, and low energy consumption, which show great application potential in the field of dynamic smart windows, full-color electronic screens, anti-glare goggles, adaptive dual-stealth camouflage, and energy storage status visualization. Cathodically coloring material tungsten oxide and anodically coloring material nickel oxide are two widely studied inorganic electrochromic materials, and complementary electrochromic devices based on WO3 and NiO films have high commercial values in the application of large scale smart windows. Improving the performance of the complementary ECDs such as optical modulation range, response rate, cycle life and weather fastness has attracted much attention. This review focuses on the structural composition of complementary electrochromic devices and summarizes the recent research progress of the electrochromic full devices based on WO3 and NiO. Firstly, the electrochromic mechanism and decay mechanism of WO3 and NiO films are clarified, the effects and latest research progress of four strategies for film performance optimization that include optimizing preparation conditions, element doping modification, designing nanostructure, and introducing composite materials are discussed in detail. Secondly, according to the composition and structure design of the device, the classification system of the complementary electrochromic full device is introduced, and the influence of selection for each component material and the device structure on device overall performance are summarized. Finally, the application of the electrochromic device prospects and development trends are forecasted.
Keywords:
本文引用格式
钟晓岚, 刘雪晴, 刁训刚.
ZHONG Xiaolan, LIU Xueqing, DIAO Xungang.
电致变色(Electrochromic, EC)是指材料的光学特性如透过率、反射率、发射率等在外电场的控制下发生稳定、可逆变化的一种智能调控技术, 断压后的电致变色器件仍能在着色和褪色两种状态之间保持稳定, 这种仅需在变色的一瞬间施加电压的低能耗性使其在节能建筑中具有独一无二的优势, 尤其是在办公大楼的智能窗和客机眩窗等领域应用广泛。
自1969年Deb研制出第一个基于WO3的电致变色器件以来[1], 提高电致变色器件性能的研究就一直是人们关注的重点。目前大多数的电致变色器件仍存在颜色或透过率调制范围小、响应速度慢、循环稳定性差、装配工艺不完善和难以大规模制备等种种问题, 而发挥阴极和阳极电致变色材料协同补色作用的互补型器件在提高光学对比度和循环寿命等方面的作用已得到普遍认可, 并大规模运用在智能窗的商业化生产中。阴极电致变色材料是指在发生还原反应时着色的一种无机过渡金属氧化物[2,3], 包括WO3、TiO2、Ta2O5等[4], 其中WO3作为最早被深入研究的电致变色材料, 其变色机理相对清晰, 制备工艺也日趋成熟, 常用作互补型电致变色器件中的关键变色层。有多种适合与WO3组成互补型器件的阳极电致变色材料, 如IrO2[5]、V2O5[6]和NiO[7]等, 其中NiO是最具前途的一种阳极电致变色材料, 具有光学调制范围大、着色效率高和循环耐久性好等诸多优点, 在互补型电致变色器件中常被用作WO3的对电极。
本文综述了基于WO3和NiO的电致变色器件的最新研究进展, 介绍了WO3和NiO两种典型电致变色薄膜的变色机理、衰退机制和制备工艺, 重点讨论了提高WO3和NiO薄膜性能的几种有效策略, 随后介绍了透明导电层和离子传导层的材料分类和传统与新型的器件结构设计, 并总结了各层薄膜性质和器件组装方式对全器件性能的影响, 最后展望了互补型电致变色器件的应用前景和未来研究趋势。
1 WO3薄膜研究进展
1.1 WO3的结构和变色机理
氧化钨是最早被研究的一种阴极电致变色材料, 可分为结晶态WO3和非晶态WO3。晶体WO3由周期性排列的WO6正八面体组成, 是一种类钙钛矿结构, W原子位于八面体的中心, O原子作为连接点使WO3内部形成可供离子传输的多边形通道。非晶态WO3由于相对无序的结构提供了更大的离子通道和更多的反应位点, 往往表现出优异的EC性能, 但稳定性通常不如晶体WO3。
其中, M+表示H+、Li+、Na+、K+等阳离子, 电荷在W6+和W5+之间转移引起WO3光吸收的变化, 薄膜从透明变成蓝色。Schirmer等[10]提出的小极化子模型也是基于离子和电子共同注入和抽出的观点, 除此之外还有能级模型、配位场模型等理论, 这些变色理论都有各自的局限性, 但离子和电子共同作用的电致变色机理目前已得到普遍认可。
1.2 WO3薄膜的衰退机制
WO3电致变色薄膜具有大光学调制范围、高着色效率、良好的可逆性等诸多优点, 相比于有机电致变色材料, WO3薄膜还能在多次循环过程中保持稳定、可逆的颜色变化, 以及在恶劣的环境中持续地工作。然而, 在长时间的电荷插入和抽出的过程中, WO3薄膜和器件的EC性能会大幅度下降, 如光调制能力减弱、响应时间变长等, 严重影响了电致变色器件的实际使用效果。
图1
1.3 WO3薄膜的性能优化
无机电致变色材料WO3具有从透明态到深蓝色变化的大透过率调制范围和柔和舒适的颜色转换, 在智能窗的生产和应用中具有不可比拟的优势, 能够调节窗口的透过照明强度以提供舒适的室内环境、美学设计和提高建筑节能效率。然而, WO3薄膜的致密性和较低的扩散系数使其切换时间非常长, 在需要快速响应的电子设备等领域表现得不尽人意, 提高WO3的响应速度、着色效率仍是当前研究的重点, 改进制备方法、掺杂元素、设计纳米结构和复合材料是改善WO3薄膜性能的几种常用手段。
1.3.1 制备方法
常用的WO3薄膜生产方法有水热法[13]、溶剂热法[14]、溶胶-凝胶法[15]、电化学沉积法[16]、喷墨打印[17]和磁控溅射法[18]等。由于WO3薄膜的制备方法多样, 每种方法的可调参数较多, 所以在不同工艺下制备的WO3薄膜质量差异很大。水热法是一种高温高压控制晶体生长的方法, 但需要先在基底上制备晶种层, 电子科技大学贾春阳等[13]研究了一种简单高效制备WO3薄膜的一步水热法, 使用甘油作为自种剂, 无需预先制备晶种层, 制备出的WO3薄膜具有15000次的高循环稳定性和78.1%的大光学调制幅度, 着褪色时间较短(5 s/6 s)。河南大学蔡国发等[16]采用了一种新颖的脉冲电化学沉积法制备高性能的多孔WO3薄膜, 这种方法无需模板和热处理, 适用于不同的导电基底, 其中在ITO玻璃上制备的WO3薄膜具有97.7%超大光学调制幅度和118.3 cm2/C高着色效率。磁控溅射法是一种常用的物理制备方法, 北京航空航天大学刁训刚课题组[18]采用磁控溅射法研究了WO3薄膜在Ar和O2气氛中退火后的性质, 如图2所示, 发现在Ar气中氧空位浓度高, WO3薄膜的EC性能更好, 但循环稳定性变差。
图2
1.3.2 元素掺杂
图3展示了2016~2020年已研究的WO3薄膜掺杂元素在元素周期表中的分布。Co[19]、Ni[20]、Mo[21,22]、Nb[23]、Ti[24,25]、Ru[26]、Au[27]、Li[28]、Sb[29]等金属元素掺杂和Eu[30,31]、Gd[32]、Tb[33]、Ce[34]等稀土元素掺杂能明显增强WO3薄膜的EC性能, 有些元素甚至还表现出其他的功能。中国科学技术大学徐春叶课题组[19]发现Co离子掺杂的WO3膜表面形貌变化显著, 表现出更高的透射率调制(680 nm处75.4%)和超过4000次的稳定性。该课题组还通过水热法将Tb离子掺杂到WO3薄膜中[33], 抑制了WO3的定向生长, 引入的非晶态和多孔网状结构使WO3薄膜具有良好的EC性能, 同时WO3薄膜还具有光致发光的功能, 可以在260 nm紫外光下实现绿色发射。浙江大学涂江平课题组[23]研究了Nb掺杂的WO3薄膜, 具有超快的响应速度, 着色和漂白时间分别为3.6和2.1 s。
图3
图3
2016~2020年已研究WO3和NiO薄膜的掺杂元素
Fig. 3
Elements doped to WO3 and NiO films which researched from 2016 to 2020
1.3.3 纳米结构
纳米结构是通过改变薄膜物理形貌来增大薄膜与电解质之间的接触面积, 从而达到缩短电荷传输距离的目的。设计纳米点、纳米线、纳米棒和纳米片等低维纳米结构已被证明是提高WO3薄膜电致变色性能的有效策略, 快速的离子/电子转移速度和更多的活性位点有助于增强WO3薄膜的光学调制程度和缩短着褪色响应时间。
图4
1.3.4 复合材料
2 NiO薄膜研究进展
2.1 NiO的结构和变色机制
NiO晶体是NaCl型面心立方结构, 在实际制备时NiO薄膜通常为非化学计量比的P型半导体, 存在Ni2+空位。NiO在碱性溶液和在含Li+电解液等不同类型电解质中的电致变色机制完全不同。在碱性溶液如KOH中的变化可参考Bode模型[40], NiO的变色过程是从透明的Ni(OH)2转化到有色的NiOOH, 光谱吸收与Ni2+和Ni3+之间的电荷转移有关。Passerini等[41]初步提出了NiO薄膜在LiClO4-PC中的变色机制, 首先NiO通过不可逆反应变成透明的LiyNiOx, 然后Li+离子和电子的共同嵌入脱出使LiyNiOx和Li(y-z)NiOx之间发生可逆的颜色转换, 如式(2)和(3)。
另外还有研究表明NiO薄膜的变色与薄膜表面离子有关以及在电致变色过程中生成了更高价态的Ni4+,这些理论进一步完善了NiO的电致变色机制。
2.2 NiO薄膜的衰退机制
2.3 NiO薄膜的性能优化
氧化镍在褪色时为透明态或浅褐色, 着色时呈现深棕色, 这种柔和的中性色可与WO3的颜色叠加, 非常适合用于智能窗中。但是NiO的光学调制率通常不如WO3, 还存在漂白态的透过率较低、着褪色响应时间长、长期循环稳定性差等问题。本节从薄膜的生产方法改进、元素掺杂、纳米结构的设计和复合材料的引入等方面介绍NiO电致变色性能优化的研究进展。
2.3.1 制备方法
图5
2.3.2 元素掺杂
近期对氧化镍薄膜元素掺杂的研究集中在金属元素掺杂, 如Cu[52]、Li[53]、W[54]和Li-Mg[55]、Li-Ta[56]双元素共掺杂等, 见图3。Firat等[52]研究了Cu掺杂NiO薄膜的形貌和EC性能, Cu掺杂的NiO薄膜具有极短的颜色响应时间, 着色为1.77 s, 褪色为2.26 s。Lee等[54]采用直流反应磁控溅射法, 以钨镍合金为靶材制备了W掺杂的NiO薄膜, W掺杂能使纯NiO膜在电化学循环过程中由深陷阱位点引起的退化降至最低。刁训刚等[55]使用射频磁控溅射法在NiO薄膜中共掺杂了Mg和Li, 通过预锂化扩大了NiO的间隙, 改善了短波长下NiO薄膜的EC性能。
2.3.3 纳米结构
设计纳米结构的NiO可以缩短离子的扩散距离, 提高NiO薄膜的响应速度, 多孔纳米结构还能为离子传输提供通道, 有效提高NiO薄膜的循环稳定性。Wu等[57]使用电泳沉积法制备了晶粒尺寸在10.36 nm左右的NiO纳米晶薄膜, 在550 nm处具有较大的光调制幅度(54.1%), 切换速度较快(tc=7.3 s, tb=3.9 s)。如图6所示, 李垚等[58]报道了一种简便ZnO模板辅助水解法制备的NiO纳米管阵列膜, 具有极大的透过率调制(78.5%)和快速的开关响应时间(tc=3.92 s, tb=3.43 s)。Ren等[59]采用光敏溶胶-凝胶法制备了多孔阵列的NiO图案膜, 与致密的NiO膜相比, 多孔NiO图案膜具有更好的电致变色性能和更长的使用寿命(3000次)。
图6
2.3.4 复合材料
NiO薄膜的低导电性导致了开关速度慢、着色效率低的问题, 利用复合材料的协同作用可以改善NiO薄膜的电致变色性能。中国科学院长春光学精密机械与物理研究所刘星元团队[60]采用简单的一步电子束沉积法, 在室温条件下成功地制备了透明、导电、无需ITO的NiO/Ag/NiO膜, 该薄膜在可见光区平均透过率超过70%。东华大学王宏志课题组[61]通过金属有机骨架(MOF)的两步热解法制备了分级多孔NiO@C薄膜, 制备流程见图7, 调节C的含量可改善薄膜的电化学和EC性能, 最佳C含量的多孔NiO@C薄膜具有极快的切换速度(tc= 0.46 s, tb=0.25 s)、超高的着色效率(113.5 cm2/C)和显著的循环稳定性20000次)。
图7
3 基于WO3和NiO的电致变色器件
传统的电致变色器件为五层结构, WO3和NiO通常作为电致变色层和离子存储层, 二者中间是离子传导层, 两侧是用于传输电子的透明导电层。电致变色器件的整体性能不仅与各层薄膜的性质有关, 还取决于层与层之间的协同作用和器件结构的设计。
3.1 透明导电层
透明导电层是电致变色器件的重要组成部分, 起到连接器件与外电路的作用。常见的透明导电薄膜包括金属薄膜和金属氧化物半导体膜, 在智能窗等应用中要求透明导电膜同时具有高透过率和高导电性。金属虽然具有良好的导电性, 但是在可见光波段不透明, 极薄的金属膜可以解决透光问题, 然而制备较为困难, 容易引入不连续的岛状结构, 反而增加电阻率。金属氧化物薄膜因在可见光区具有很好的透过性而被广泛使用, 常见的有In2O3:Sn(ITO), SnO2:F(FTO)和ZnO:Al(AZO)等。
ITO的研究和应用最多, ITO不仅具有较低的电阻率和高可见光透过率, 还具有与基底结合牢固、抗擦伤的优点。然而单层的ITO存在电导率与透过率难以平衡的问题, 因此一种新的“电介质/金属/电介质”三层结构透明导电膜得到了人们的关注。刁训刚等[62]采用磁控溅射法在玻璃基底上制备了具有低电阻和高透明性的堆叠ITO/Ag/ITO(IAI)电极。IAI(50 nm/5 nm/30 nm)薄膜的薄层电阻低至7.4 Ω, 在NiOx、WO3电致变色薄膜和完整的Glass/IAI/ NiOx/LiClO4-PC-PMMA/WO3/IAI/Glass器件中均表现出优异的性能。为了解决ITO导电薄膜中In元素稀少、有毒造成的高成本和污染性的问题, 该课题组还研究了AZO薄膜的性能[63], 其品质因数高达12.14×10-3 Ω-1, 平均透射率为92.2%, 但AZO的电学性能还有待提高。
3.2 离子传导层
在互补型电致变色器件中, 离子传导层位于阴极和阳极电致变色材料中间, 起到提供变色阳离子和阻隔电子的作用。离子传导层通常选用高离子电导率、低电子电导率的透明电解质, 包括液态电解质、凝胶电解质和固态电解质。
液态电解质的离子迁移率最高, 能为电致变色器件提供快速的可逆反应, 北京航空材料研究院颜悦团队[68]分别研究了LiClO4、LiPF6、LiTFSI三种含有不同锂盐的液体电解质对NiO、WO3薄膜和Glass/ITO/WO3/Li+/NiO/ITO/Glass结构电致变色器件的影响, 不同电致变色膜在同一电解液中的电压和阻抗具有明显差异。液态电解质虽然具有优异的离子电导率, 但其腐蚀性和流动性往往造成封装上的困难和漏液风险, 构建多孔结构的离子传导层或引入吸附毡均是比较有效的解决策略。
固态电解质具有良好的稳定性和耐候性, 便于封装和大规模制备, 在全固态电致变色器件中具有极其重要的地位, 如Ta2O5[71]、ZrO2[72]、LiF[73]、LiPON[74]等。锂基固态电解质的研究较为成熟, 李垚课题组[73]采用电阻蒸发法制备了LiF无机固态电解质, 在无机全固态glass/ITO/WO3/LiF/NiO/ITO器件中表现出良好的性能。中国科学院上海硅酸盐研究所包山虎团队[75]通过锂铝靶共溅射制备出的LixAlOz薄膜具有高透明度、良好的离子导电性和超高稳定性, 该团队还制备了10 cm×10 cm的大型全固态电致变色器件(ITO/NiOx/LixAlOz/WO3/ITO), 如图8所示。固态电解质在应用和制备上具有独特的便捷性, 但是离子电导率低的问题仍是当前固态电解质的研究重点。
图8
3.3 器件结构设计
WO3和NiO薄膜组成的电致变色器件通常具有标准的“三明治”结构, 离子传导层中的阳离子在电场的作用下会从NiO薄膜中脱出并嵌入到WO3薄膜中, 使WO3和NiO电致变色膜同时着色, 反之二者同时褪色。表1总结了近五年来由WO3和NiO组成的电致变色器件的结构与响应时间(tc、tb)、着色效率(CE)和光调制范围(ΔT)等性能对比。
表1 2016~2020年基于WO3和NiO薄膜的电致变色器件结构与性能对比
Table 1
| Year | Device structure | tc/s | tb/s | CE/(cm2·C-1) | ΔT/% | Cycles | Ref. |
|---|---|---|---|---|---|---|---|
| 2016 | ITO/NiOx/ZrO2:H/WO3/ITO | 116 | 108 | - | 65.2 | 2000 | [72] |
| 2016 | ITO/NiOx/Ta2O5:H/WO3/ITO | - | - | - | 60 | - | [76] |
| 2016 | ITO/WO3/LiClO4-PC-PMMA/NiOx/ITO | 4.5 | 1.7 | - | 51.7 | 50000 | [77] |
| 2016 | Glass/ITO/WO3/LiNbO3/NiOx/ITO | 45 | 25 | - | 65 | - | [78] |
| 2016 | ITO/NiOx:Ti/PVB(Li+)/WO3/ITO | 4.4 | 3.2 | 96 | 60 | - | [79] |
| 2017 | Glass/ITO/WO3/PVB-GPEF/Ni1-xO/ITO/Glass | 9.5 | 16 | 175.34 | 65.8 | 3000 | [80] |
| 2017 | Glass /ITO/NiOx/electrolyte/WO3/ITO | 7 | 2 | - | 70 | 300 | [81] |
| 2017 | Glass /ITO/NiO/Si3N4/LiNbO3/Si3N4/WO3/ITO | - | - | - | 43 | - | [82] |
| 2017 | ITO/NiO/Ta2O5/LiNbO3/WO3/ITO | - | - | - | 34 | - | [83] |
| 2018 | Glass/ITO/NiO/Si3N4/LixMgyN/WO3/ITO | - | - | 77 | 40 | 1000 | [84] |
| 2018 | Glass/ITO/WO3/Li2.5TaOx/NiO/ITO | 30 | 30 | 63 | 40 | 300 | [71] |
| 2018 | FTO/WO3/gel polymer electrolyte/NiO/FTO | 1.2 | 2.6 | - | 43.81 | 20000 | [85] |
| 2018 | Glass/ITO/WO3:H/Ta2O5/NiOx/ITO | - | - | 24.3 | 42 | 300 | [86] |
| 2018 | Glass/ITO/WO3/LiPON/NiO/ITO | - | - | - | 40 | - | [74] |
| 2018 | Glass/ITO/LixNiOy/LiTaO3/WO3/ITO | 13 | 3.5 | 42 | 40 | 7000 | [87] |
| 2018 | ITO/NiOx/Ta2O5/LiNbO3/Ta2O5/WO3/ITO | - | - | 98 | 52.5 | 10000 | [88] |
| 2018 | ITO/NiO/ZrO2/LiNbO3/WO3/ITO | - | - | 24.3 | 53 | - | [89] |
| 2018 | ITO/NiO/Ta2O5/LiNbO3/WO3/ITO/Glass | 10 | 7 | - | 71.7 | - | [90] |
| 2019 | Glass/IAI/NiOx/LiClO4-PC-PMMA/WO3/IAI/Glass | 2.25 | 2.02 | 31.7 | 55 | - | [62] |
| 2019 | ITO/NiOx/LixAlOz/WO3/ITO | 5.7 | 2.2 | 76.45 | 74.4 | 10000 | [75] |
| 2019 | ITO/WO3-Nb2O5/Nb2O5/NiVOx/ITO | 7 | 0.7 | - | 33 | 30000 | [91] |
| 2019 | ITO/WO3/LiClO4-PC-PMMA/NiO/ITO | 3.2 | 1.1 | 130.8 | 45 | 1000 | [92] |
| 2019 | ITO/NiOx/Ta2O5/LiNbO3/Ta2O5/WO3/ITO | 18.4 | 9.5 | - | 55.2 | 2500 | [93] |
| 2019 | ITO/NiOx/Ta2O5/WO3/ITO | 13 | 2 | - | 70.9 | - | [94] |
| 2020 | Glass /ITO/WO3/LiF/NiO/ITO | 9.6 | 4 | 88.5 | 58.9 | 450 | [73] |
| 2020 | ITO/WO3/Gelatin/NiO/ITO | 10 | 50 | 60.38 | 43.35 | - | [70] |
| 2020 | ITO/Li-NiO/Li-WO3/ITO | 8.6 | 1.7 | 87.5 | 32 | 1000 | [95] |
| 2020 | ITO/WO3/LiClO4-PC-PMMA-ACN/NiO/ITO | 1.2 | 1.5 | 243 | 51.27 | 20000 | [96] |
| 2020 | ITO/WO3/LiNbO3/Al-LiNiOx/ITO | 17.9 | 4.1 | - | 44 | 5000 | [97] |
图9
图9
ECD的结构示意图
Fig. 9
Structural schematic diagram of ECD
(a) Monolithic ECD; (b) Laminated ECD; (c) Seven-layered ECD; (d) Four-layered ECD[95]
4 结论与展望
本文综述了基于WO3和NiO的电致变色器件近年来的研究进展, 重点讨论了电致变色层WO3和离子存储层NiO薄膜的研究现状, 总结了器件其他组分和组装方式发挥的作用和典型器件性能对比。基于WO3和NiO的电致变色器件具有驱动电压低和双稳态的性能, 在节能领域尤其是智能窗的应用中已趋于成熟, 目前美国Sage-Glass、View Inc.、德国EControl-Glas以及瑞典Chromo Genics等多家公司均可实现电致变色玻璃的大规模工业化生产。但国内的大多数研究还处于实验室或中试阶段, 在智能窗的生产尤其是在提高大尺寸全器件的稳定性和完善工艺等方面仍然面临着巨大的挑战, 虽然近几年国内的学者们已经对此做了诸多努力, 但大都集中在改善单层薄膜性能的研究上, 缺乏对电致变色全器件的持续研究, 进一步探究全器件的性能和突破工业生产的技术瓶颈仍是当前的研究重点。除了智能窗以外, 工作温度范围宽、化学稳定性好、循环寿命长等优点使电致变色器件也非常适合用于室外环境, 目前已有许多学者致力于开发电致变色器件在电子领域的应用, 特别是在静态图像显示、户外广告、仪表显示等领域的前景可待。
参考文献
All-inorganic solid-state electrochromic devices: a review
Advances in inorganic all-solid-state electrochromic materials and devices
Handbook of Inorganic Electrochromic Materials
Cation insertion reactions of electrochromic tungsten and iridium oxide-films
High-performance flexible complementary electrochromic device based on plasma modified WO3 nano hybrids and V2O5 nanofilm with low operation voltages
Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window
Optical and photoelectric properties and color centers in thin-films of tungsten oxide
Electrochromism in WO3 amorphous films
Dependence of WO3 electrochromic absorption on crystallinity
The mechanism of trapped ions eroding the electrochromic performances of WO3 thin films
Ions transport control in electrochromic WO3 film for the cyclic stability study
Directly grown high- performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications
Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance
Inkjet printing of Sol-Gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices
Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity
Inkjet printed large area multifunctional smart windows
Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing
Cobalt ions doped tungsten oxide nanowires achieved vertically aligned nanostructure with enhanced electrochromic properties
Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices
Fabrication of Mo-doped WO3 nanorod arrays on FTO substrate with enhanced electrochromic properties
Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications
Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties
Ti-doped WO3 synthesized by a facile wet bath method for improved electrochromism
Electrodeposition of Ti-doped hierarchically mesoporous silica microspheres/tungsten oxide nanocrystallines hybrid films and their electrochromic performance
WO3 thin films doped with Ru by facile chemical method with enhanced electrochromic properties for electrochromic window application
A thorough study on electrochromic properties of metal doped tungsten trioxide film prepared by a facile solution process
Electrochromic properties of lithium-doped tungsten oxide prepared by electron beam evaporation
Effects of Sb-doped SnO2-WO3 nanocomposite on electrochromic performance
A europium ion doped WO3 film with the bi-functionality of enhanced electrochromic switching and tunable red emission
Effect of pH on the electrochromic and photoluminescent properties of Eu doped WO3 film
Effect of Gd-doping on electrochromic properties of sputter deposited WO3 films
Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films
Multifunctional WO3-based materials have been increasingly attracting attention due to their unique physical and electrochemical nature. In this work, the luminescent species, terbium (Tb) ions, were first successfully doped into WO3 films by a hydrothermal method to incorporate their electrochromic and photoluminescent functions. The amorphous state and porous net structure are introduced, which can be attributed to the inhibited orientation growth caused by the occupation of Tb ions in the WO3 lattice. Here, the optimal 13% Tb-WO3 film exhibits enhanced electrochromic properties: a high transmittance modulation of 66.71%; a fast response speed of less than 10 s; an improved CE value of 48.33 cm(2) C(-1) at 680 nm; and cycling stability over 600 cycles without obvious degradation, arising from its larger active surface area. Meanwhile, its green-colored emission could be realized under 260 nm UV light and is electro-switchable upon applying voltage.
Ce-doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance
WO3 quantum-dots electrochromism
Enhanced electrochromic performance of 2D grid-structured WO3 thin films
Improved electrochromic performance of WO3 films with size controlled nanorods
Bifunctional urchin-like WO3@PANI electrodes for superior electrochromic behavior and lithium-ion battery
A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites
Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat
Electrochromism of thin-film nickel-oxide electrodes
Electrochromic degradation in nickel oxide thin film: a self-discharge and dissolution phenomenon
Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: glass/ITO/WO3/LiTaO3/NiO/ITO
Synthesis and water oxidation electrocatalytic and electrochromic behaviours of mesoporous nickel oxide thin film electrodes
A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window
Preparation and properties of NiO/PB hybrid electrochromic film
UV treatment for enhanced electrochromic properties of spin coated NiO thin films
Optimization of low value electrodeposition parameters of nano-structured NiO electrochromic thin films
The effect of the oxygen ratio control of DC reactive magnetron sputtering on as-deposited non stoichiometric NiO thin films
The influence of crystallinity on the electrochromic properties and durability of NiO thin films
Controllable crystallinity of nickel oxide film with enhanced electrochromic properties
Efficiency enhancement of electrochromic performance in NiO thin film
Lattice and electronic structure variations in critical lithium doped nickel oxide thin film for superior anode electrochromism
Investigation of all-solid-state electrochromic devices with durability enhanced tungsten-doped nickel oxide as a counter electrode
Enhanced electrochromism in short wavelengths for NiO:(Li, Mg) films in full inorganic device ITO/NiO:(Li, Mg)/Ta2O5/WO3/ITO
Improved electrochromic performance of NiO-based thin films by lithium and tantalum co-doping
Room-temperature fabrication of NiO films for electrochromic application by electrophoretic deposition (EPD): from single layers to devices
Facile preparation of aligned NiO nanotube arrays for electrochromic application
Preparation of a porous NiO array-patterned film and its enhanced electrochromic performance
Trifunctional NiO-Ag-NiO electrodes for ITO-free electrochromic supercapacitors
Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high- performance electrochromism
Optimized properties of innovative ElectroChromic Device using ITO/Ag/ITO electrodes
Influence of thickness on the structure, electrical, optical and electrochromic properties of AZO thin films and their inorganic all-solid-state devices
An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering
Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review
Direct inkjet-patterning of energy efficient flexible electrochromics
Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors
Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes
An aramid nanofibers-based gel polymer electrolyte with high mechanical and heat endurance for all-solid-state NIR electrochromic devices
Effects of ethylene-acrylic acid ionomer on thermomechanical and electrochromic properties of electrochromic devices using gelatin-based electrolytes
Thickness dependent surface roughness of sputtered Li2.5TaOx ion conductor and its effect on electro-optical performance of inorganic monolithic electrochromic device
Enhanced transmittance modulation of ITO/NiOx/ZrO2:H/WO3/ITO electrochromic devices
All solid state electrochromic devices based on the LiF electrolyte
The role of interface between LiPON solid electrolyte and electrode in inorganic monolithic electrochromic devices
High performance and excellent stability of all-solid-state electrochromic devices based on a Li1.85AlOz ion conducting layer
Electrochromic properties and performance of NiOx films and their corresponding all-thin- film flexible devices preparedby reactive DC magnetron sputtering
Electrolytes-relevant cyclic durability of nickel oxide thin films as an ion-storage layer in an all-solid-state complementary electrochromic device
Preparation and Properties of All-solid-state Inorganic Thin Film Glass/ITO/WO3/LiNbO3/NiOx/ITO Electrochromic Device. Selected Papers of the Photoelectronic Technology Committee Conferences Held November 2015
Improved performance of co-sputtered Ni-Ti oxide films for all-solid-state electrochromic devices
Polyvinyl butyral-based gel polymer electrolyte films for solid-state laminated electrochromic devices
Optical, electrical, and electrochemical properties of indium tin oxide thin films studied in different layer-structures and their corresponding inorganic all-thin-film solid-state electrochromic devices
Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device
Annealing effects of NiO thin films for all-solid-state electrochromic devices
Electro-optical performance of inorganic monolithic electrochromic device with a pulsed DC sputtered LixMgyN ion conductor
A novel hybrid quasi-solid polymer electrolyte based on porous PVB and modified PEG for electrochromic application
Properties of all-thin-film glass/ITO/WO3:H/Ta2O5/NiOx/ITO electrochromic devices prepared by magnetron sputtering
High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution
Charge-transfer kinetics and cyclic properties of inorganic all-solid-state electrochromic device with remarkably improved optical memory
Fabrication of an all solid-state electrochromic device using zirconium dioxide as an ion-conducting layer
The effects of lithiation process on the performance of all-solid-state electrochromic devices
An all-solid-state electrochromic device based on WO3-Nb2O5 composite films prepared by fast-alternating bipolar-pulsed reactive magnetron sputtering
Fast-switching quasi-solid state electrochromic full device based on mesoporous WO3 and NiO thin films
High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices
Reactively sputtered WO3 thin films for the application in all thin film electrochromic devices
Preparation and performance of fast-response ITO/Li-NiO/Li-WO3/ITO all-solid-state electrochromic devices by evaporation method
Electrochromic properties of ITO/WO3/LiClO4- PC-PMMA-ACN/NiO/ITO framework
Enhanced electrochromic performance on anodic nickel oxide inorganic device via lithium and aluminum co-doping
Improved performance of all-thin-film electrochromic devices with two ZrO2 protective layers
/
| 〈 |
|
〉 |
