无机材料学报, 2020, 35(1): 1-7 DOI: 10.15541/jim20190560

综述

三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望

李勉, 黄庆,

中国科学院 宁波材料技术与工程研究所, 先进能源材料工程实验室(筹), 宁波 315201

Recent Progress and Prospects of Ternary Layered Carbides/Nitrides MAX Phases and Their Derived Two-dimensional Nanolaminates MXenes

LI Mian, HUANG Qing,

Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology& Engineering, Chinese Academy of Sciences, Ningbo 315201, China

通讯作者: 黄 庆,研究员. E-mail:huangqing@nimte.ac.cn

收稿日期: 2019-11-1   修回日期: 2019-11-13   网络出版日期: 2020-01-20

基金资助: 国家自然科学基金(21671195, 51902320)

Corresponding authors: HUANG Qing, professor. E-mail:huangqing@nimte.ac.cn

Received: 2019-11-1   Revised: 2019-11-13   Online: 2020-01-20

Fund supported: National Natural Science Foundation of China(21671195, 51902320)

摘要

近年来, 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料MXene受到了科学界的广泛关注。MAX相的晶体结构由Mn+1Xn结构单元与A元素单原子面交替堆垛排列而成, 兼具金属和陶瓷的诸多优点, 在高温结构材料、摩擦磨损器件、核能结构材料等领域有较大的应用潜力。MAX相的A层原子被刻蚀之后获得成分为Mn+1XnTx(Tx为表面基团)的二维纳米材料, 即MXene, 具有丰富的成分组合以及可调谐的物理化学性质, 在储能器件、电磁屏蔽、电子器件等领域表现出良好的应用前景。本文简要介绍近年来国内外MAX相和MXene材料领域在成分与结构、合成方法、性能与应用研究等方面的研究动态, 据此展望未来几年该类新颖材料的发展方向。

关键词: MAX相; MXene; 层状材料; 综述

Abstract

In recent years, ternary layered carbide/nitride MAX phases and their derived two-dimensional nanolaminates MXenes have attracted extensive attention. The crystal structure of MAX phase is composed of Mn+1Xn unit interleaved with layers of A element. MAX phases combine good properties of metal and ceramic, which makes them promising candidates for high temperature structural materials, friction and wear devices, nuclear structural materials, etc. When etching the A-layer atoms of the MAX phase, the two-dimensional nanolaminates with the composition of Mn+1XnTx (Tx is surface termination), i.e. MXene, is obtained. MXenes have wide range of composition, and tunable physical and chemical properties, which endow them great potential in the applications of energy storage devices, electromagnetic shielding materials, and electronic devices, etc. In this paper, the research progress of MAX phase and MXene was introduced in terms of composition and structure, synthesis methods, and properties and application. Furthermore, the research prospects of this large family of materials were discussed.

Keywords: MAX phase; MXene; layered materials; review

PDF (6216KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李勉, 黄庆. 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望. 无机材料学报, 2020, 35(1): 1-7 DOI:10.15541/jim20190560

LI Mian, HUANG Qing. Recent Progress and Prospects of Ternary Layered Carbides/Nitrides MAX Phases and Their Derived Two-dimensional Nanolaminates MXenes. Journal of Inorganic Materials, 2020, 35(1): 1-7 DOI:10.15541/jim20190560

20世纪60年代, 奥地利维也纳大学的Nowotny等[1,2]首先报道了40余种具有密排六方结构的化合物, 如Ti2AlN、V2AlC和Nb2InC等, 并将其统称为H-相(H-phase)。1996年, 美国德雷克塞尔大学的Barsoum团队[3]合成出高纯的Ti3SiC2陶瓷材料, 并揭示其具有可加工性、优异的抗热震性能和高损伤容限, 引起了科学界广泛的关注。Barsoum 等[4]在2000年的综述文章中将早期发现的H-相和Ti3SiC2等具有Mn+1AXn化学通式的层状化合物统称为MAX相, 其中M为前过渡族金属, A主要为ⅢA和ⅣA族元素, X为碳或氮, n=1~3。近年来, 科学家们合成出更多的新MAX相材料, 不仅数量和组元大幅增加, 而且原子晶体结构特点也体现出新特征。迄今为止, MAX相家族的成员已经达到100多种[5], 组成元素中M位元素从Ti、V、Cr等前过渡族金属元素拓展到了Ce、Pr等稀土元素[6], A位元素也从熟知的ⅢA和ⅣA族元素扩展到了Au、Ir、Zn和Cu等后过渡族金属元素[7,8,9], X位元素则增加了B元素(如Ti2InB2)[10](图1)。与此同时, 材料科学家在合成和表征新型的固溶型 MAX 相(solid-solution MAX phases)、面内有序型MAX相(in-plane ordered MAX phases, i-MAX)和面外有序型MAX相(out-of-plane ordered MAX phases, o-MAX)等方面不断取得突破, 进一步展现了MAX相材料的结构调谐性。其中固溶型多为四组元MAX相, 可分为M位、A位、X位化学无序固溶, 如(Cr0.5V0.5)2GeC[11]、Ti3SixGe1-xC2[12]和Ti3Al(C0.5N0.5)2[13]等。i-MAX和o-MAX均属于M位原子化学有序固溶的四元MAX相, 新引入的M位原子在晶格中占据了不同的位置(图 2)。i-MAX的两种M位原子均占据同一平面并有序固溶, o-MAX的两种M位原子则分别占据不同平面。瑞典林雪平大学Rosen等[14]首先报道并系统研究了i-MAX相结构材料(Mo2/3Sc1/3)2AlC。中国科学院金属研究所的李美栓等[15]则在2014年报道了o-MAX相结构材料(Cr2/3Ti1/3)3AlC2。美国德雷克塞尔大学的Anasori等[16]随后发现了多种o-MAX相, 并利用高分辨扫描透射电镜技术(High-resolution scanning transmission electron microscopy, HR-STEM)对其原子结构进行了确认。可以看出, MAX相晶体结构充分体现出元素包容性和结构多样性, 这对其性能探索和应用研究提供了巨大的想象空间。

图1

图1   目前已合成MAX相的组元分布, 其中M位元素(赤橙色)已经拓展到镧系稀土, A位(天青色)添加了含未满d电子的副族元素, X位(草绿色)则增加了硼元素

Fig. 1   Element distribution of the MAX phases known to date. The M-site elements (orange color) have been extended to lanthanides, A-site elements (blue color) have been extended to subgroup element with unsaturated d-orbitals, and boron has been added into X-site elements (green color)


图2

图2   高分辨扫描透射电镜照片显示MAX(a)、i-MAX(b)和(c)o-MAX的原子排布[8,16-17]

Fig. 2   HR-STEM images showing the atomic positions of MAX phase (a), i-MAX phase (b), and o-MAX phase (c)[8,16-17]


MAX相晶体结构中Mn+1Xn单元层具有较强的共价键成分, 而A层原子与相邻的M原子电子云重叠较低造成结合较弱, 研究人员利用这种结构特点将Mn+1Xn从MAX相中分离出来, 合成了一大类二维过渡族金属碳氮化物材料。2011年德雷克塞尔大学的Naguib等[18]利用氢氟酸刻蚀Ti3AlC2中的Al原子层,首次报道了具有Ti3C2Tx成分的二维片层材料, 其中Tx为Ti3C2表面的基团(一般为-O、-F、-OH等)。考虑到其原子结构和石墨烯中的碳原子堆积方式(空间群均为P63/mmc)相似, 研究人员分别从Mn+1Xn和Graphene中取出关键词, 将其命名为MXene[18]。MXene材料一经报道便引起了科学界的广泛关注, 被认为在储能、电磁屏蔽等领域都具有巨大的应用潜力[19,20,21]。随后, Ti2CTx、V2CTx、Ta4C3Tx、TiNbCTx和Ti3CNTx等MXene不断地从对应的MAX相材料中合成出来(A 位一般为Al 元素)[22,23]。瑞典林雪平大学的Rosen等[14, 24]通过刻蚀i-MAX相(Mo2/3Sc1/3)2AlC和(W2/3Sc1/3)2AlC分别得到了具有部分M原子空位的MXene:Mo1.33CTx和W1.33CTx, 体现了MXene晶体结构的多样性。此外, MXene在表面基团化学多样性以及性能调控方面也表现出潜力。除了-O、-F、-OH等表面基团类型, 2019年发现了新型-Cl基团[8,25], 这为通过改变表面基团组成来调控MXene的性能提供了空间[26,27]

1 材料合成方法

一般而言, MAX相大多通过粉末冶金法在高温下合成, 典型的合成工艺为将组成元素粉末球磨混合后加压成型, 然后加热至反应温度(一般在1200 ℃以上)烧结成目标MAX相陶瓷[4]。物理气相沉积方法也是常用合成MAX相的手段[28], 该方法利用等离子体轰击组成元素靶材形成高能气态原子或带电离子, 这些气态粒子在磁场作用下均匀混合并沉积到基板材料上, 并反应生成目标MAX相的薄膜材料。物理气相沉积过程中组成元素能够在原子级别上实现均匀混合, 对于反应动力学即原子间的扩散提供了较大的便利, 因此能够显著降低MAX相的生成温度。例如物理气相沉积一步合成V2AlC薄膜材料, 成相温度可以降低至600 ℃[29]。MAX相反应温度的降低不仅对于工艺成本控制有帮助, 还扩大了薄膜基板的选择范围。

长期以来, MAX相的A位元素一直局限于以Al、Si和Ga等为代表的主族元素, 而副族元素易与M位元素形成合金竞争相, 因此较难得到A位含有副族元素的MAX相(Ti2CdC除外)。2017年, 瑞典林雪平大学的Per Eklund等[7]在Ti3SiC2薄膜表面沉积了一层Au薄膜, 并发现在高温热处理过程中Au原子能够无限固溶进入A位的Si原子层。通过Au-Si二元相图的分析, 该Au-Si高温固溶体在低温下的平衡相分别为低固溶的富Si相和富Au相, 从而可以实现单元素的再次分离。Per Eklund等利用扫描透射电子显微技术分析并发现MAX相中的Si原子大量进入外部的Au层, 而Au则取代原有A位晶格位形成全新的MAX相材料Ti3AuC2。中国科学院宁波材料技术与工程研究所的黄庆等[8-9,30]近期则提出了一种基于高温路易斯酸熔盐中A位元素置换反应的合成策略。该A位元素置换策略是利用MAX相Mn+1Xn亚层与A层原子分别与路易斯酸反应性不同的特点, 在高温熔盐条件下将A位原子转化为阳离子并生成易挥发的氯化物, 同时路易斯酸中的阳离子则被还原成金属原子并嵌入原有的A位晶格位, 从而得到了一系列以Zn、Cu为A位元素的全新MAX相材料[8-9, 30]。元素置换过程保持了MAX相原有的拓扑结构, 并避免了M和A位原子生成竞争相的可能。“自上而下”的A位元素置换策略有别于传统的“自下而上”的粉末冶金法与物理气相沉积合成法, 为新型MAX相的探索以及功能化设计提供了路径。

探索环境友好的MXene的合成方法是推动其广泛研究和应用的关键问题。早期的MXene材料大多通过氢氟酸刻蚀MAX相得到。氢氟酸刻蚀法虽然简单有效, 但存在环境污染大、对人体有害和产业化成本高等问题。因此, 研究人员不断探索新的刻蚀剂, 包括NH4HF2溶液、NH4F、LiF和HCl混合溶液、熔融氟盐以及有机碱等[31,32]。可以看出以上刻蚀剂大多为含氟体系, 且通常在有氧条件下刻蚀, 最终MXene材料表面基团也以-O、-F、-OH等为主, 因此有必要开发更灵活的刻蚀工艺来实现MXene材料的表面基团与性能调控。黄庆等[8, 25]在A位元素置换策略合成全新MAX相工作中发现, 通过调控ZnCl2熔盐的路易斯酸碱性能够同时实现MAX相的刻蚀, 并首次得到了全-Cl基团的MXene(图3)。该熔盐路易斯酸刻蚀化学可一般化, 即当高温熔盐具有合适氧化还原电位时均可以作为有效的MAX相刻蚀剂, 如ZnCl2、CuCl2等。这些新型的路易斯酸高温熔盐能够对更广泛的MAX相材料进行剥离, 如常规不易剥离的Ti3SiC2[33]。相比于大多数含氟溶液刻蚀体系, 路易斯酸高温熔盐刻蚀技术具有组分丰富、熔点可调控、易于后处理等特点, 在刻蚀动力学调控、表面基团控制等方面也更具化学调控优势。

图3

图3   氯化锌熔盐刻蚀MAX相制备MXene过程示意图(a), 扫描电镜照片显示Ti3C2Cl2 MXene的微观形貌(b)和高分辨扫描透射电镜照片显示Ti3C2Cl2 MXene的原子排布(c)[8]

Fig. 3   A schematic diagram showing the process of producing MXene by using ZnCl2 to etch MAX phase (a), scanning electron microscopy(SEM) image showing the microstructure of Ti3C2Cl2 MXene (b), and HR-STEM image showing the atomic positions of Ti3C2Cl2 MXene (c)[8]


2 性能与应用

MAX相独特的层状晶体结构是其高强度和高断裂韧性的主要原因。以Ti3SiC2为例, 其室温强度和1300 ℃高温强度分别达到了600和260 MPa, 杨氏模量约为320 GPa[3]。与此同时, Ti3SiC2具有层间撕裂和基础面滑移等断裂能吸收机制, 其断裂韧性显著高于普通陶瓷, 且具有室温可加工性。同时, Ti3SiC2陶瓷的室温热导率和室温电导率分别达到43 W/(m·K)和4.5×106 S/m[3], 为金属Ti的1.6和2.0倍, 为TiC的2.0和2.8倍。优异的导电和导热性质使得MAX相材料在高温电接触应用具有独特的优势。此外, 部分MAX相中A位元素能够在高温氧化环境下快速扩散至材料表面并形成致密氧化膜, 为氧扩散进入MAX相材料内部提供了屏障。例如, TiC在500 ℃左右即开始快速氧化, 而Ti3SiC2的氧化则相当缓慢[34], 这与表面生成致密的含Si氧化物有关。Al系MAX相, 如Ti2AlC、Cr2AlC等, 则具有更优的抗氧化性能, 其主要原因在于MAX相材料表面形成了连续的致密Al2O3[35,36]。值得关注的是, MAX相材料近年来被认为是下一代事故容错和燃料包壳涂层的优选材料。前期大量高能离子模拟辐照和中子辐照研究均显示MAX相材料表现出良好的耐辐照损伤性能[37,38,39]。研究表明, Ti3SiC2、Ti3AlC2和Ti2AlC等MAX相的中子辐照活性与SiC材料接近, 比Alloy 617型镍基合金低3个数量级[40,41]。目前美国能源部和欧盟能源署均对MAX相材料的核能应用给予了足够的重视。

在MAX相功能应用方面, 研究工作者对MAX相作为摩擦磨损器件[42]、电触头器件[43]和复合材料增强相[44]等多方面的应用都进行了探索, 并取得了较好的研究成果。MAX相结构特点决定了A位原子能在Mn+1Xn亚层提供的二维限域平面内发挥出自身的功能特性。2017年, Per Eklund等[7]合成出Ti3AuC2, 并发现Ti3AuC2与SiC具有良好的欧姆接触特性, 其高温欧姆接触稳定性远高于Ti3AlC2, 这对于未来高功率半导体器件有很强的实用价值。利用A位元素置换策略合成的Ti3(AlxCu1-x)C2材料中处于A平面内的Cu原子能够形成单原子催化活性位点, 使MAX相表现出类纳米无机酶的过氧化氢探测能力(图4)[9], 这在食品卫生监测等领域具有应用潜力。此外, 如果能将磁性元素引入MAX相中空间受限的A位单原子平面内, 可望探索新颖的物理特性, 而已有的报道大多考虑将磁性过渡族金属放入M位, 如Mn2GaC。最新的研究工作发现V2SnC材料的A晶格位具有很强的多元素容纳能力, Fe、Co、Ni、Mn等磁性元素可以任意排列组合放入A位(可能达到15种以上), 甚至A位可以同时具有Sn和以上四种磁性元素的高熵MAX相[45]。普遍认为具有外层d电子的磁性元素更适合处于MAX相的M晶格位, 而当这些元素处于A晶格位时避免了X元素的成键影响, 更容易体现出其电子自旋相关的物理性质。MAX相的能源存储能力一直是材料科学家感兴趣的话题, 实际上MXene也是MAX相储锂研究遇到困难之后无意发现后衍生的新材料。虽然如此, Gogotsi等[46]近期还是报道了Ti2SC和Ti3SiC2两种MAX相材料的电化学储能性质, 如Ti2SC的容量在电流密度为 400 mA·g-1下循环1000次之后仍可达到180 mAh·g-1左右。吉林大学高宇同Gogotsi合作[47]进一步选择Nb2SnC材料作为研究对象, 其容量在电流密度为 500 mA·g-1下循环500次后也达到了150 mAh·g-1, 显示出MAX相作为电池电极具有的应用潜力。氢能被认为是目前最清洁的能源形式, 该领域主要受到低温储氢材料的制约。浙江大学刘永峰团队[48]尝试将Ti3AlC2与MgH2混合, 并发现MgH2-7wt% Ti3AlC2材料体系的析氢温度达到205 ℃, 较原始MgH2析氢温度下降了近70 ℃, 并且两相材料在 150 ℃下的储氢能力提高到5.8wt%(MgH2仅为2.7wt%)。MAX相协同储氢的机制目前还没有详细的研究, 已有学者计算了氢原子在MAX相中不同原子间的间隙位型(四面体、六面体或八面体)中存在的稳定性及对MAX相结构稳定性的影响, 这或许能为未来MAX相储氢研究提供理论指导[49]。有理由相信, 随着MAX相结构与化学多样性的日益丰富, 未来在磁性、催化和新能源等方面会涌现更多的应用研究成果。

图4

图4   高分辨扫描透射电镜照片显示Ti3(AlxCu1-x)C2的原子排布(a)、Ti3(AlxCu1-x)C2探测过氧化氢机理示意图(b)和Ti3(AlxCu1-x)C2与Ti3AlC2探测过氧化氢性能对比(c)[9]

Fig. 4   HR-STEM image showing the atomic positions of Ti3(AlxCu1-x)C2 (a), a schematic diagram showing the H2O2 detecting mechanism of Ti3(AlxCu1-x)C2 (b), and comparison of the H2O2 detecting ability between Ti3(AlxCu1-x)C2 and Ti3AlC2 (c)[9]


具有类石墨烯二维纳米结构的MXene材料功能化研究越来越受到科研工作者的关注, 其丰富的表面化学为储能、吸附、传感、生物和催化等研究提供了广阔的空间, 这部分工作的总结可参见近年来几篇优秀的综述[50,51,52,53], 这里就不再赘述。需要指出的是MXene具有极佳的电磁屏蔽性能, 如2016年Koo和Gogotsi等[20]Science上报道45 μm厚的Ti3C2Tx薄膜的电磁屏蔽系数达到92 dB, 引起了极大的关注, 该性能甚至优于同厚度的金属铜, 这和单层MXene的高导电性有很大的关系。该研究结果有望用于高功率应用装备(如5G及以上通讯设备等)中的滤波器件, 也可应用于微波屏蔽和隐身涂层等特殊场合。对于MXene的功能应用, 应该特别重视的问题是MXene材料的结构稳定性。由于外层M元素有未成对电子, 氧化性物质易攻击MXene表面和边缘的M元素, 造成二维纳米结构的崩溃。最新的科研进展显示聚磷酸根、聚硅酸根、聚硼酸根、L-抗坏血酸钠等材料能较好地延缓MXene的氧化, 并保持MXene的结构完整性和导电性[54,55]。除了上述长时间储存的要求, 未来的研究可以更多地考虑MXene在服役过程中的氧化和结构稳定性问题。

3 总结与展望

MAX相材料近年来在结构多样化与组分多元化等方面呈现出新的研究热点, 这对于MAX相陶瓷材料结构与功能一体化研究有极大的裨益。稀土元素和过渡族元素分别进入M和A位将深刻改变MAX相内部的电子云分布和成键形式, 将直接影响材料力学行为、物理特性和化学反应性。MAX相衍生二维材料MXene的发展则吸引了多学科的研究者关注这一大家族过渡族金属碳氮化合物。化学、物理、生物和工程等领域多学科交叉研究势必推动MAX相和MXene材料更快的发展。未来3~5年, 科学界有望在诸多方面取得更多的突破, 尤其是以下四个方向值得关注:

1) i-MAX和o-MAX等新型结构的解析与应用研究, 尤其是稀土元素对于MAX相性能的调控和拓展值得关注;

2) 副族元素尤其是外层d电子未满的过渡族金属元素占据MAX相A位有望推动MAX相从结构应用转向功能应用研究, 特别是在核燃料包壳、能源转换、氢能存储、磁性器件、化工催化等领域有望取得突破;

3) MXene合成技术面临更多的挑战以应对储能、光伏、生物、电子、传感等应用领域的实用需求, 微纳结构构筑和多功能组元的协同作用仍然是未来研究的热点;

4) MXene在物理领域的研究方兴未艾, 在压电效应、压阻效应、热电效应、自旋电子相关效应等研究领域都有可能发现新现象和新的应用, 在任意基板上生长高质量单晶MXene材料和元素的精确调控仍然是物理原型器件研究的最大挑战。

MAX相作为一大家族材料, 目前已经发现有80余种单相材料, 固溶型或部分取代型更是不胜枚举。MXene的种类也因MAX相的深厚土壤而变得更加丰富。MAX相和MXene的发现和发展极好地体现了150年前门捷列夫开始绘制的元素周期表给予人类探索新材料的指导作用, 也充分体现了多组元元素在一定规则下形成特定晶体结构的丰富性。随着多学科的共同努力, 相信MAX相和MXene材料将展现出更多新奇的特性和应用潜力。

参考文献

NOWOTNY V H .

Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn

Prog. Solid State Chem., 1971,5:27-70.

DOI      URL     [本文引用: 1]

JEITSCHKO W, NOWOTNY V H, BENESOVSKY F .

Die H-phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC

Monatshefte für Chemie, 1964,95(1):178-179.

DOI      URL     [本文引用: 1]

BARSOUM M W, EI-RAGHY T .

Synthesis and characterization of a remarkable ceramic: Ti3SiC2

J. Am. Ceram. Soc., 1996,79(7):1953-1956.

DOI      URL     [本文引用: 3]

BARSOUM M W .

The MN+1AXN phases a new class of solids; thermodynamically stable nanolaminates

Prog. Solid State Chem., 2000,28:201-281.

DOI      URL     PMID      [本文引用: 2]

We have studied the electronic structure and elastic properties of Y(n+1)Co(3n+5)B(2n) (space group P6/mmm), where n = 1, 2, 3 and [Formula: see text], using ab initio calculations. These ternary borides exhibit a bulk-modulus-to-C(44) ratio from 1.6 to 1.9, which is rather unusual for ceramics. This may be understood on the basis of the electronic structure: predominantly covalent-ionic YCo(3)B(2) layers are interleaved with predominantly metallic YCo(5) layers. Covalent-ionic bonding between B and Co may give rise to a large bulk modulus, while weak coupling between the YCo(3)B(2) and YCo(5) layers may be responsible for the low C(44) value. On the basis of the similarity in electronic structure and elasticity data, it is reasonable to assume that the Y(n+1)Co(3n+5)B(2n) compounds investigated here may exhibit similar properties to the so-called MAX phases (Barsoum 2000 Prog. Solid State Chem. 28 201).

SOKOL M, NATU V, KOTA S ,et al.

On the chemical diversity of the MAX phases

Trends Chem., 2019,1(2):210-223.

DOI      URL     PMID      [本文引用: 1]

With increased chemical diversity and structural complexity comes the opportunities for innovative materials possessing advantageous properties. Herein, we combine predictive first-principles calculations with experimental synthesis, to explore the origin of formation of the atomically laminated i-MAX phases. By probing (Mo2/3 M1/32)2 AC (where M2 = Sc, Y and A = Al, Ga, In, Si, Ge, In), we predict seven stable i-MAX phases, five of which should have a retained stability at high temperatures. (Mo2/3Sc1/3)2GaC and (Mo2/3Y1/3)2GaC were experimentally verified, displaying the characteristic in-plane chemical order of Mo and Sc/Y and Kagomé-like ordering of the A-element. We suggest that the formation of i-MAX phases requires a significantly different size of the two metals, and a preferable smaller size of the A-element. Furthermore, the population of antibonding orbitals should be minimized, which for the metals herein (Mo and Sc/Y) means that A-elements from Group 13 (Al, Ga, In) are favored over Group 14 (Si, Ge, Sn). Using these guidelines, we foresee a widening of elemental space for the family of i-MAX phases and expect more phases to be synthesized, which will realize useful properties. Furthermore, based on i-MAX phases as parent materials for 2D MXenes, we also expect that the range of MXene compositions will be expanded.

TAO Q, LU J, DAHLQVIST M , et al.

Atomically layered and ordered rare-earth i-MAX phases: a new class of magnetic quaternary compounds

. Chem. Mater., 2019,31(7):2476-2485.

DOI      URL     [本文引用: 1]

FASHANDI H, DAHLQVIST M, LU J , et al.

Synthesis of Ti3AuC2, Ti3Au2C2and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC

Nat. Mater., 2017,16(8):814-818.

DOI      URL     PMID      [本文引用: 3]

The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 °C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.

LI M, LU J, LUO K , et al.

Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes

J. Am. Chem. Soc., 2019,141(11):4730-4737.

DOI      URL     PMID      [本文引用: 9]

Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.

LI Y, LI M, LU J , et al.

Single-atom-thick active layers realized in nanolaminated Ti3( AlxCu1-x)C2 and its artificial enzyme behavior

ACS Nano, 2019,13(8):9198-9205.

DOI      URL     PMID      [本文引用: 6]

A Ti3(Al x Cu1-x)C2 phase with Cu atoms with a degree of ordering in the A plane is synthesized through the A site replacement reaction in CuCl2 molten salt. The weakly bonded single-atom-thick Cu layers in a Ti3(Al x Cu1-x)C2 MAX phase provide actives sites for catalysis chemistry. As-synthesized Ti3(Al x Cu1-x)C2 presents unusual peroxidase-like catalytic activity similar to that of natural enzymes. A fabricated Ti3(Al x Cu1-x)C2/chitosan/glassy carbon electrode biosensor prototype also exhibits a low detection limit in the electrochemical sensing of H2O2. These results have broad implications for property tailoring in a nanolaminated MAX phase by replacing the A site with late transition elements.

WANG J, YE T N, GONG Y , et al.

Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB

Nat. Commun., 2019,10(1):2284.

DOI      URL     PMID      [本文引用: 1]

Mn+1AXn phases are a large family of compounds that have been limited, so far, to carbides and nitrides. Here we report the prediction of a compound, Ti2InB2, a stable boron-based ternary phase in the Ti-In-B system, using a computational structure search strategy. This predicted Ti2InB2 compound is successfully synthesized using a solid-state reaction route and its space group is confirmed as P[Formula: see text]m2 (No. 187), which is in fact a hexagonal subgroup of P63/mmc (No. 194), the symmetry group of conventional Mn+1AXn phases. Moreover, a strategy for the synthesis of MXenes from Mn+1AXn phases is applied, and a layered boride, TiB, is obtained by the removal of the indium layer through dealloying of the parent Ti2InB2 at high temperature under a high vacuum. We theoretically demonstrate that the TiB single layer exhibits superior potential as an anode material for Li/Na ion batteries than conventional carbide MXenes such as Ti3C2.

PHATAK N A, SAXENA S K, FEI Y , et al.

Synthesis of a new MAX compound (Cr0.5V0.5)2GeC and its compressive behavior up to 49 GPa

J. Alloys Compd., 2009,475(1/2):629-634.

DOI      URL     [本文引用: 1]

GANGULY A, ZHEN T, BARSOUM M W .

Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x=0.5, 0.75) solid solutions

J. Alloys Compd., 2004,376(1/2):287-295.

DOI      URL     [本文引用: 1]

MANOUN B, SAXENA S K .

Synthesis and compressibility of Ti3(Al, Sn0.2)C2 and Ti3Al(C0.5, N0.5)2

J. Appl. Phys., 2007,101(11):113523.

DOI      URL     [本文引用: 1]

TAO Q, DAHLQVIST M, LU J , et al.

Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering

Nat. Commun., 2017,8:14949.

DOI      URL     PMID      [本文引用: 2]

The exploration of two-dimensional solids is an active area of materials discovery. Research in this area has given us structures spanning graphene to dichalcogenides, and more recently 2D transition metal carbides (MXenes). One of the challenges now is to master ordering within the atomic sheets. Herein, we present a top-down, high-yield, facile route for the controlled introduction of ordered divacancies in MXenes. By designing a parent 3D atomic laminate, (Mo2/3Sc1/3)2AlC, with in-plane chemical ordering, and by selectively etching the Al and Sc atoms, we show evidence for 2D Mo1.33C sheets with ordered metal divacancies and high electrical conductivities. At ∼1,100 F cm-3, this 2D material exhibits a 65% higher volumetric capacitance than its counterpart, Mo2C, with no vacancies, and one of the highest volumetric capacitance values ever reported, to the best of our knowledge. This structural design on the atomic scale may alter and expand the concept of property-tailoring of 2D materials.

LIU Z, WU E, WANG J , et al.

Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase

Acta Mater., 2014,73:186-193.

DOI      URL     [本文引用: 1]

The crystal structure of the newly synthesized quaternary MAX phase (Cr2/3Ti1/3)(3)A1C(2) was systematically characterized by various techniques. The space group of (Cr2/3Ti1/3)(3)A1C(2) is determined to be P6(3)/mmc by a combination of selected-area and convergent-beam electron diffraction techniques. Rietveld refinements of the neutron diffraction and X-ray diffraction data show that in (Cr2/3Ti1/3)(3)A1C(2), Ti and Cr are ordered with Ti in the 2a and Cr in the 4f Wyckoff sites of a M(3)AX(2) lattice. It is interesting to find that when the order of the magnetic moment of Cr atoms is considered, the ferromagnetic configuration of (Cr2/3Ti1/3)(3)A1C(2) becomes the ground state. Meanwhile, the Raman-active mode wavenumbers of (Cr2/3Ti1/3)(3)A1C(2) were calculated, and the theoretical data are quite consistent with the experimental data, further proving the ordered crystal structure of this phase. The formation of (Cr2/3Ti1/3)(3)A1C(2) with a unique crystal structure may be related to the distinctly different electronegativities and covalent radii of Cr and Ti atoms. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd.

ANASORI B, XIE Y, BEIDAGHI M , et al.

Two-dimensional, ordered, double transition metals carbides (MXenes)

ACS Nano, 2015,9(10):9507-9516.

DOI      URL     PMID      [本文引用: 3]

The higher the chemical diversity and structural complexity of two-dimensional (2D) materials, the higher the likelihood they possess unique and useful properties. Herein, density functional theory (DFT) is used to predict the existence of two new families of 2D ordered, carbides (MXenes), M'2M″C2 and M'2M″2C3, where M' and M″ are two different early transition metals. In these solids, M' layers sandwich M″ carbide layers. By synthesizing Mo2TiC2Tx, Mo2Ti2C3Tx, and Cr2TiC2Tx (where T is a surface termination), we validated the DFT predictions. Since the Mo and Cr atoms are on the outside, they control the 2D flakes' chemical and electrochemical properties. The latter was proven by showing quite different electrochemical behavior of Mo2TiC2Tx and Ti3C2Tx. This work further expands the family of 2D materials, offering additional choices of structures, chemistries, and ultimately useful properties.

LU J, THORE A, MESHKIAN R , et al.

Theoretical and experimental exploration of a novel in-plane chemically ordered (Cr2/3M1/3)2AlC i-MAX phase with M = Sc and Y

Cryst. Growth Des., 2017,17(11):5704-5711.

DOI      URL     [本文引用: 2]

NAGUIB M, KURTOGLU M, PRESSER V , et al.

Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2

Adv. Mater., 2011,23(37):4248-4253.

DOI      URL     PMID      [本文引用: 2]

TANG Q, ZHOU Z, SHEN P .

Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer

J. Am. Chem. Soc., 2012,134(40):16909-16916.

DOI      URL     [本文引用: 1]

Density functional theory (DFT) computations were performed to investigate the electronic properties and Li storage capability of Ti3C2, one representative MXene (M represents transition metals, and X is either C or/and N) material, and its fluorinated and hydroxylated derivatives. The Ti3C2 monolayer acts as a magnetic metal, while its derived Ti3C2F2 and Ti3C2(OH)(2) in their stable conformations are semiconductors with small band gaps. Li adsorption forms a strong Coulomb interaction with Ti3C2-based hosts but well preserves its structural integrity. The bare Ti3C2 monolayer exhibits a low barrier for Li diffusion and high Li storage capacity (up to Ti3C2Li2 stoichiometry). The surface functionalization of F and OH blocks Li transport and decreases Li storage capacity, which should be avoided in experiments. The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti3C2 MXene a promising anode material for Li ion batteries.

SHAHZAD F, ALHABEB M, HATTER C B , et al.

Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

. Science, 2016,353(6304):1137-1140.

DOI      URL     PMID      [本文引用: 2]

Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

GHIDIU M, LUKATSKAYA M R, ZHAO M Q , et al.

Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance

Nature, 2014,516(7529):78-81.

DOI      URL     [本文引用: 1]

Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors in particular, pseudocapacitors(1,2). Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium(3). The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre(4,5); hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cydability, but only in thin films(6) Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre(7,8). Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report(8), and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.

NAGUIB M, MASHTALIR O, CARLE J , et al.

Two-dimensional transition metal carbides

ACS Nano, 2012,6(2):1322-1331.

DOI      URL     PMID      [本文引用: 1]

Herein we report on the synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF. The MAX phases represent a large (>60 members) family of ternary, layered, machinable transition metal carbides, nitrides, and carbonitrides. Herein we present evidence for the exfoliation of the following MAX phases: Ti(2)AlC, Ta(4)AlC(3), (Ti(0.5),Nb(0.5))(2)AlC, (V(0.5),Cr(0.5))(3)AlC(2), and Ti(3)AlCN by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication. The removal of the "A" group layer from the MAX phases results in 2-D layers that we are labeling MXenes to denote the loss of the A element and emphasize their structural similarities with graphene. The sheet resistances of the MXenes were found to be comparable to multilayer graphene. Contact angle measurements with water on pressed MXene surfaces showed hydrophilic behavior.

NAGUIB M, MOCHALIN V N, BARSOUM M W , et al.

25th anniversary article: MXenes: a new family of two-dimensional materials

Adv. Mater., 2014,26(7):992-1005.

DOI      URL     [本文引用: 1]

Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2AlC, Ti3AlC2, and Ta4AlC3. MXenes combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as conductive clays. This article reviews progressboth experimental and theoreticalon their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.

MESHKIAN R, DAHLQVIST M, LU J , et al.

W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering

Adv. Mater., 2018,30(21):1-8.

DOI      URL     PMID      [本文引用: 1]

Structural design on the atomic level can provide novel chemistries of hybrid MAX phases and their MXenes. Herein, density functional theory is used to predict phase stability of quaternary i-MAX phases with in-plane chemical order and a general chemistry (W2/3 M21/3 )2 AC, where M2 = Sc, Y (W), and A = Al, Si, Ga, Ge, In, and Sn. Of over 18 compositions probed, only two-with a monoclinic C2/c structure-are predicted to be stable: (W2/3 Sc1/3 )2 AlC and (W2/3 Y1/3 )2 AlC and indeed found to exist. Selectively etching the Al and Sc/Y atoms from these 3D laminates results in W1.33 C-based MXene sheets with ordered metal divacancies. Using electrochemical experiments, this MXene is shown to be a new, promising catalyst for the hydrogen evolution reaction. The addition of yet one more element, W, to the stable of M elements known to form MAX phases, and the synthesis of a pure W-based MXene establishes that the etching of i-MAX phases is a fruitful path for creating new MXene chemistries that has hitherto been not possible, a fact that perforce increases the potential of tuning MXene properties for myriad applications.

LU J, PERSSON I, LIND H , et al.

Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations

Nanoscale Adv., 2019,1(9):3680-3685.

DOI      URL     [本文引用: 2]

PERSSON I, GHAZALY A E, TAO Q , et al.

Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases

Small, 2018,14(17):1-7.

DOI      URL     PMID      [本文引用: 1]

The exploration of 2D solids is one of our time's generators of materials discoveries. A recent addition to the 2D world is MXenes that possses a rich chemistry due to the large parent family of MAX phases. Recently, a new type of atomic laminated phases (coined i-MAX) is reported, in which two different transition metal atoms are ordered in the basal planes. Herein, these i-MAX phases are used in a new route for tailoriong the MXene structure and composition. By employing different etching protocols to the parent i-MAX phase (Mo2/3 Y1/3 )2 AlC, the resulting MXene can be either: i) (Mo2/3 Y1/3 )2 C with in-plane elemental order through selective removal of Al atoms or ii) Mo1.33 C with ordered vacancies through selective removal of both Al and Y atoms. When (Mo2/3 Y1/3 )2 C (ideal stoichiometry) is used as an electrode in a supercapacitor-with KOH electrolyte-a volumetric capacitance exceeding 1500 F cm-3 is obtained, which is 40% higher than that of its Mo1.33 C counterpart. With H2 SO4 , the trend is reversed, with the latter exhibiting the higher capacitance (≈1200 F cm-3 ). This additional ability for structural tailoring will indubitably prove to be a powerful tool in property-tailoring of 2D materials, as exemplified here for supercapacitors.

SCHULTZ T, FREY N C, HANTANASIRISAKUL K , et al.

Surface termination dependent work function and electronic properties of Ti3C2Tx MXene

Chem. Mater., 2019,31(17):6590-6597.

DOI      URL     [本文引用: 1]

EKLUND P, BECKERS M, JANSSON U , et al.

The Mn+1AXn phases: materials science and thin-film processing

Thin Solid Films, 2010,518(8):1851-1878.

DOI      URL     PMID      [本文引用: 1]

2D molybdenum disulfide (MoS2 ) gives a new inspiration for the field of nanoelectronics, photovoltaics, and sensorics. However, the most common processing technology, e.g., liquid-phase based scalable exfoliation used for device fabrication, leads to the number of shortcomings that impede their large area production and integration. Major challenges are associated with the small size and low concentration of MoS2 flakes, as well as insufficient control over their physical properties, e.g., internal heterogeneity of the metallic and semiconducting phases. Here it is demonstrated that large semiconducting MoS2 sheets (with dimensions up to 50 µm) can be obtained by a facile cathodic exfoliation approach in nonaqueous electrolyte. The synthetic process avoids surface oxidation thus preserving the MoS2 sheets with intact crystalline structure. It is further demonstrated at the proof-of-concept level, a solution-processed large area (60 × 60 µm) flexible Ebola biosensor, based on a MoS2 thin film (6 µm thickness) fabricated via restacking of the multiple flakes on the polyimide substrate. The experimental results reveal a low detection limit (in femtomolar-picomolar range) of the fabricated sensor devices. The presented exfoliation method opens up new opportunities for fabrication of large arrays of multifunctional biomedical devices based on novel 2D materials.

SHU R, GE F, MENG F , et al.

One-step synthesis of polycrystalline V2AlC thin films on amorphous substrates by magnetron co-sputtering

Vacuum, 2017,146:106-110.

DOI      URL     [本文引用: 1]

DING H, LI Y, LU J , et al.

Synthesis of MAX phases Nb2CuC and Ti2( Al0.1Cu0.9)N by A-site replacement reaction in molten salts

Mater. Res. Lett., 2019,7(12):510-516.

DOI      URL     [本文引用: 2]

ANASORI B, LUKATSKAYA M R, GOGOTSI Y .

2D metal carbides and nitrides (MXenes) for energy storage

Nat. Rev. Mater., 2017,2(2):16098.

DOI      URL     PMID      [本文引用: 1]

2D transition-metal carbides and nitrides, named MXenes, are promising materials for energy storage, but suffer from aggregation and restacking of the 2D nanosheets, which limits their electrochemical performance. In order to overcome this problem and realize the full potential of MXene nanosheets, a 3D MXene foam with developed porous structure is established via a simple sulfur-template method, which is freestanding, flexible, and highly conductive, and can be directly used as the electrode in lithium-ion batteries. The 3D porous architecture of the MXene foam offers massive active sites to enhance the lithium storage capacity. Moreover, its foam structure facilitates electrolyte infiltration for fast Li+ transfer. As a result, this flexible 3D porous MXene foam exhibits significantly enhanced capacity of 455.5 mAh g-1 at 50 mA g-1 , excellent rate performance (101 mAh g-1 at 18 A g-1 ), and superior ultralong-term cycle stability (220 mAh g-1 at 1 A g-1 after 3500 cycles). This work not only demonstrates the great superiority of the 3D porous MXene foam but also proposes the sulfur-template method for controllable constructing of the 3D foam from 2D nanosheets at a relatively low temperature.

NG V M H, HUANG H, ZHOU K , et al.

Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications.

J. Mater. Chem. A, 2017,5(7):3039-3068.

DOI      URL     PMID      [本文引用: 1]

The recent development of nanoscale fillers, such as carbon nanotubes, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches for the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address the design of the polymer nanocomposite architecture, which encompasses one, two, and three dimensional morphologies. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of the filler and interfacial bonding between the filler and polymer, are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale fillers can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle-matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.

LI Y, SHAO H, LIN Z , et al.

A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte

arXiv:1909. 13236.

[本文引用: 1]

BARSOUM M W, EL-RAGHY T OGBUJI L U J T .

Oxidation of Ti3SiC2 in air

J. Electrochem. Soc., 1997,144(7):2508-2516.

DOI      URL     [本文引用: 1]

FENG Z, KE P, HUANG Q , et al.

The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor

Surf. Coatings Technol., 2015,272:380-386.

DOI      URL     [本文引用: 1]

HAJAS D E, BABEN M T, HALLSTEDT B , et al.

Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410 ℃

Surf. Coatings Technol., 2011,206(4):591-598.

DOI      URL     [本文引用: 1]

HUANG Q, HAN H, LIU R , et al.

Saturation of ion irradiation effects in MAX phase Cr2AlC

Acta Mater., 2016,110:1-7.

DOI      URL     [本文引用: 1]

YANG T, WANG C, TAYLOR C A , et al.

The structural transitions of Ti3AlC2 induced by ion irradiation

Acta Mater., 2014,65:351-359.

DOI      URL     [本文引用: 1]

The structural transitions of Ti3AlC2 induced by ion irradiation were investigated over a wide fluence range by transmission electron microscopy. No amorphization occurs even at the highest dose of 31 dpa, indicating a great tolerance to irradiation-induced amorphization. Dynamic electron diffraction simulations and high-resolution observations indicate that the nanolamellar structure of Ti3AlC2 is readily destroyed through the formation of antisite defects and a phase transformation from alpha-Ti3AlC2 to beta-Ti3AlC2 occurs at 2.61 dpa. A great number of stacking faults in basal planes are formed with increasing fluence, leading to the formation of nano Ti3AlC2 grains with different stacking sequences at 10.45 dpa. Serious structural damage and polygonization are observed at the highest dose of 31 dpa. Due to the similar structural transition process with some complex oxides (pyrochlore and murataite), it is assumed that the great irradiation tolerance of Ti3AlC2 results from the low formation energy of antisite defects. These findings first clarify the structural transition mechanism of Ti3AlC2 under ion irradiation and its relationship with irradiation tolerance, which is of vital importance in understanding the irradiation response of MAX phases and provides a clue in searching for materials with higher irradiation tolerance from MAX phases. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd.

WANG C, YANG T, TRACY C L , et al.

Disorder in Mn+1AXn phases at the atomic scale

Nat. Commun., 2019,10(1):1-9.

DOI      URL     PMID      [本文引用: 1]

Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

TALLMAN D J, HOFFMA E N, CASPI E N , et al.

eEffect of neutron irradiation on select MAX phases

Acta Mater., 2015,85:132-143.

DOI      URL     [本文引用: 1]

TALLMAN D J, HE L, GARCIA-DIAZ B L , et al.

Effect of neutron irradiation on defect evolution in Ti3SiC2 and Ti2AlC

J. Nucl. Mater., 2016,468:194-206.

DOI      URL     [本文引用: 1]

RESTER M, NEIDHARDT J, EKLUND P , et al.

Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance.

Mater. Sci. Eng. A, 2006,429(1/2):90-95.

DOI      URL     [本文引用: 1]

WANG D, TIAN W, MA A , et al.

Anisotropic properties of Ag/Ti3 AlC2 electrical contact materials prepared by equal channel angular pressing

J. Alloys Compd., 2019,784:431-438.

DOI      URL     [本文引用: 1]

ZHANG J, WANG J Y, ZHOU Y C .

Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites

Acta Mater., 2007,55(13):4381-4390.

DOI      URL     [本文引用: 1]

Abstract

The structural stability of Ti3AlC2 in Cu and the microstructure evolution of Cu–Ti3AlC2 composites prepared at different temperatures were investigated by high-resolution transmission electron microscopy and X-ray diffraction. A mild reaction between Ti3AlC2 and Cu occurred at 850–950 °C, and strong reactions occurred above 950 °C. The reaction was identified as diffusion of Al from Ti3AlC2 into Cu to form Cu(Al) solid solution. Ti3AlC2 retained its structure under the partial loss of Al. Further depletion of Al resulted in highly defective Ti3AlC2 accompanied by the inner diffusion of Cu into Ti3AlC2 along the passway left by the Al vacancies. When Al was removed, Ti3AlC2 decomposed and transformed into cubic TiCx. In addition, TiC twins formed by the aggregation of C vacancies at twin boundaries. With the help of first-principles calculation and image simulation, an ordered hexagonal TiCx was identified as a transition phase linking Ti3AlC2 and c-TiCx. The effect of the reaction and phase transformation on the microstructure and properties of Cu–Ti3AlC2 composites was also discussed.

LI Y, LU J, LI M , et al.

Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A)C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties.

Proceedings of the National Academy of Sciences of the United Sates of America, DOI: 10.1073/pnas.1916256117.

[本文引用: 1]

XU J, ZHAO M Q, WANG Y , et al.

Demonstration of Li-ion capacity of MAX phases

ACS Energy Lett., 2016,1(6):1094-1099.

DOI      URL     [本文引用: 1]

ZHAO S, DALL’AGNESE Y, CHU X , et al.

Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions

ACS Energy Lett., 2019,4:2452-2457.

DOI      URL     [本文引用: 1]

WANG K, DU H, WANG Z , et al.

Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2

Int. J. Hydrogen Energy, 2017,42(7):4244-4251.

DOI      URL     [本文引用: 1]

LIU Q, DING H M, DU Q B ,et al. Hydrogen insertion in Ti2AlC and its influence on the crystal structure and bonds. J. Ceram. Sci. Technol., 2017,8(2):201-208.

[本文引用: 1]

GOGOTSI Y, ANASORI B .

The rise of MXenes

ACS Nano, 2019,13(8):8491-8494.

DOI      URL     PMID      [本文引用: 1]

KIM H, WANG Z, ALSHAREEF H N .

MXetronics: electronic and photonic applications of MXenes

Nano Energy, 2019,60:179-197.

DOI      URL     [本文引用: 1]

PERSSON P O Å, ROSEN J .

Current state of the art on tailoring the MXene composition, structure, and surface chemistry

Curr. Opin. Solid State Mater. Sci., 2019, doi: 10.1016/j.cossms.2019.100774.

DOI      URL     PMID      [本文引用: 1]

Stem cells reside in complex three-dimensional (3D) environments within the body that change with time, promoting various cellular functions and processes such as migration and differentiation. These complex changes in the surrounding environment dictate cell fate yet, until recently, have been challenging to mimic within cell culture systems. Hydrogel-based biomaterials are well suited to mimic aspects of these in vivo environments, owing to their high water content, soft tissue-like elasticity, and often-tunable biochemical content. Further, hydrogels can be engineered to achieve changes in matrix properties over time to better mimic dynamic native microenvironments for probing and directing stem cell function and fate. This review will focus on techniques to form hydrogel-based biomaterials and modify their properties in time during cell culture using select addition reactions, cleavage reactions, or non-covalent interactions. Recent applications of these techniques for the culture of stem cells in four dimensions (i.e., in three dimensions with changes over time) also will be discussed for studying essential stem cell processes.

YANG Q, WANG Y, LI X , et al.

Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices.

Energy Environ. Mater., 2018,1(4):183-195.

DOI      URL     [本文引用: 1]

NATU V, HART JL, SOKOL M , et al.

Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions

Angew. Chemie. Int. Ed., 2019,58(36):12655-12660.

DOI      URL     PMID      [本文引用: 1]

MXenes have shown promise in myriad applications, such as energy storage, catalysis, EMI shielding, among many others. However, MXene oxidation in aqueous colloidal suspensions when stored in water at ambient conditions remains a challenge. It is now shown that by simply capping the edges of individual MXene flakes, Ti3 C2 Tz and V2 CTz , by polyanions such as polyphosphates, polysilicates or polyborates, it is possible to quite significantly reduce their propensity for oxidation even when held in aerated water for weeks. This breakthrough resulted from the realization that the edges of MXene sheets are positively charged. It is thus an example of selectively functionalizing the edges differently from the MXene sheet surfaces.

ZHAO X, VASHISTH A, PREHN E , et al.

Antioxidants unlock shelf-stable Ti3C2T (MXene) nanosheet dispersions.

Matter., 2019,1(2):513-526.

DOI      URL     [本文引用: 1]

/