无机材料学报  2014 , 29 (8): 785-794 https://doi.org/10.15541/jim20130633

Orginal Article

g-C3N4光催化性能的研究进展

楚增勇, 原博, 颜廷楠

国防科学技术大学 理学院, 长沙410073

Recent Progress in Photocatalysis of g-C3N4

CHU Zeng-Yong, YUAN Bo, YAN Ting-Nan

College of Science, National University of Defense Technology, Changsha 410073, China

中图分类号:  TB321

文献标识码:  A

文章编号:  1000-324X(2014)08-0785-10

收稿日期: 2013-12-4

修回日期:  2014-01-16

网络出版日期:  2014-08-20

版权声明:  2014 无机材料学报编委会 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.2014 无机材料学报编委会 本文是遵循CCAL协议的开发获取论文, 允许读者下载, 并在以下场合使用: 资料查询、学术交流、科研教学、论文写作等, 但在使用时, 必须标明出处。不允许将本文用于任何商业目的。

基金资助:  国家自然科学基金(51073172)湖南省自然科学杰出青年基金(14JJ1001)

作者简介:

作者简介: 楚增勇(1974-), 男, 博士, 研究员. E-mail: chuzy@nudt.edu.cn

展开

摘要

利用光催化剂将太阳能转化为人类可以直接利用的能量, 并用其解决地球资源的枯竭和生存环境的恶化是可再生清洁能源研究的一个方向。g-C3N4的独特结构赋予其良好的光催化性能, 使之成为光催化领域的研究热点。目前在光催化领域, g-C3N4主要用于催化污染物分解、水解制氢制氧、有机合成及氧气还原。在实际应用中, 为进一步提高g-C3N4的光催化效果, 科研工作者开发了多种改进方法, 例如物理复合改性、化学掺杂改性、微观结构调整等。本文主要论述了g-C3N4在光催化领域的应用以及光催化性能的改进方法, 简要阐述了光催化和各种改进方法的机理, 分析了目前g-C3N4在光催化领域面临的问题和挑战, 展望了g-C3N4的应用前景。

关键词: g-C3N4 ; 光催化 ; 改进方法 ; 综述

Abstract

Based on photocatalysts, solar energy can be converted into the energy that human can directly utilize, so as to solve the problems such as the depletion of the Earth’s resources and the deterioration of living environments. The unique structure of g-C3N4 gives it good photocatalytic performance. Its development and utilization have been a research hotspot recently. Generally, g-C3N4 can be used in the degradation of pollutions, hydrolysis to generate hydrogen and oxygen, organic synthesis and oxygen reduction. However, in practical, its performance is not satisfactory. Researchers have tried many new methods to improve its photocatalysis, which include physical coupling modification, chemical bonding modification and microstructural modification. The review summarizes its photocatalysis and improving methods, briefly illustrates the catalysis mechanism, and presents detailed discussions and analysis on the existing problems as well as potential applications.

Keywords: g-C3N4 ; photocatalysis ; improving methods ; review

0

PDF (493KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

楚增勇, 原博, 颜廷楠. g-C3N4光催化性能的研究进展[J]. 无机材料学报, 2014, 29(8): 785-794 https://doi.org/10.15541/jim20130633

CHU Zeng-Yong, YUAN Bo, YAN Ting-Nan. Recent Progress in Photocatalysis of g-C3N4[J]. 无机材料学报, 2014, 29(8): 785-794 https://doi.org/10.15541/jim20130633

太阳能是取之不尽用之不竭的清洁能源, 人类正致力开发高效的光催化剂, 以实现对太阳能的转化利用。目前, 已开发出的光催化剂大体可分为三种: 金属氧化物、硫化物(如TiO2[1]、ZnO[2]、CdS[3]等), 贵金属半导体(如Bi2MoO6[4]、BiOBr[5]、Ag3PO4[6]等), 非金属半导体(如g-C3N4[7], 红磷[8]等)。ZnO(3.3 eV)和TiO2(3.2 eV)带隙较宽, 仅能利用只占太阳能4%的紫外光。CdS(2.4 eV)带隙较窄, 但稳定性较差。Bi2MoO6(2.9 eV)和BiOBr(2.8 eV)带隙适中, 但含有贵金属元素, 价格较高。g-C3N4是一种非金属半导体, 由地球上含量较多的C、N元素组成, 带隙约2.7 eV, 对可见光有一定的吸收, 抗酸、碱、光的腐蚀, 稳定性好, 结构和性能易于调控, 具有较好的光催化性能, 因而成为光催化领域的研究热点。

图1   g-C3N4的结构模型

Fig. 1   Structure models of g-C3N4(a) Crystal model[17]; (b) S-triazine model[7]; (c) 3-s-triazine model[7]

g-C3N4, 即石墨相的C3N4, 是五种C3N4中最稳定的一种, 其结构如图1(a)所示。关于g-C3N4的单层结构, 人们主要有两种不同的看法: 一种认为单层g-C3N4以三嗪环(C3N3环)为结构单元(如图1(b))[9-12]; 另一种认为单层g-C3N4的基本结构单元是3-s-三嗪环(C6N7环)(如图1(c))[13-15]。通过密度泛函(DFT)计算, 基于3-s-三嗪环的g-C3N4结构比基于三嗪环的g-C3N4结构稳定[16], 近年来, 大多数对g-C3N4的研究都以3-s-三嗪环结构为理论模型。

在自然界中, 至今还没有发现存在天然的g-C3N4晶体。所以, g-C3N4的研究依赖于实验合成。合适的碳源和氮源在一定条件下反应可得到g-C3N4, 常用的反应物有三聚氰胺、三聚氰氯、氰胺、二氰二胺、尿素等。目前, g-C3N4的主要合成方法有: 高温高压法[17]、溶剂热法[18]、沉积法[9, 19]、热聚合法[15, 20]等。热聚合法可以方便地通过加入其他物质或改变反应条件来调节g-C3N4的结构, 从而提高g-C3N4的光催化性能, 是目前g-C3N4研究中常用的合成方法。

1 g-C3N4光催化的类型

g-C3N4独特的结构决定了其独特的性质, 并赋予了其在光催化领域的广泛应用。目前, g-C3N4主要应用于光催化污染物分解[21-22]、光解水制氢制氧[23-24]、光催化有机合成[15, 25]和光催化氧气还原[26]等。

1.1 光催化污染物分解

应用于g-C3N4光催化性能研究的主要污染物有两类, 即有机染料(亚甲基蓝(MB)[21]、甲基橙(MO)[27]和罗丹明B(RhB)[28]等)和小分子化合物(苯酚[29-31]、2,4-二氯苯酚(2,4-DCP)[32]、2,4,6-三氯苯酚(2,4,6,-TCP)[22]、十溴联苯醚[33]、乙醛[34-35]、NO[20]和Cr(Ⅵ) [36-37]等)。光照下, g-C3N4价带电子激发至导带形成电子-空穴对, 电子与氧气分子结合, 并进一步与水分子反应。上述三个过程促使三种活性粒子的生成, 即h+、•O2-和•OH[21](图2(a))。这些活性粒子可促使有机染料(图2(b))和某些有机物分解。NO与活性粒子经一系列的反应可生成HNO3、HNO2(如图2(c)), 从而实现对含NO气体的净化[20, 38]

图2   活性粒子的产生(a)[21]与其催化有机染料降解(b)[27-28]和含NO气体净化的机理(c)[38]

Fig. 2   Generation of reactive species (a)[21] and action mechanism for degradation of organic dye (b)[27-28] and purification of gas containing NO (c)[38]

Cr(Ⅵ)/Cr(Ⅲ)的还原电势为1.33 V, 而g-C3N4的价带(1.5 V)和导带(-1.2 V)跨立在其两端, 故g-C3N4在光激发产生的电子可将剧毒的Cr(Ⅵ)还原为低毒的Cr(Ⅲ)[36-37]

1.2 光催化水解制氢制氧

g-C3N4的导带和价带跨立在H+/H2和H2O/O2还原电势的两侧, 所以g-C3N4可用来催化水的分解。在g-C3N4光催化水解制氢时, 激发至导带的电子与氢离子结合, 留下的空穴由催化体系中加入的三乙醇胺[39]、维C[40]或甲醇[41]及时移除。由于超电势的存在, g-C3N4光激发产生的电子不能快速地转移给氢离子, 影响了光解制氢的速率。在g-C3N4表面沉积一定量的Pt可以有效解决这个问题, 这是由于Pt可以和H形成Pt-H键, 有利于电子的迅速转移使H+转化为H2[42]。金属Pt的使用增加了水解制氢的成本, Hong等[43]使用NiS作为共催化剂, 取得了与使用Pt作为共催化剂相当的催化速率。

在光解水制氧时, H2O分子与光激发产生的空穴结合, 释放出氧气, 电子则需要加入AgNO3[42, 44]等试剂去除。为了防止H+的积累导致pH的下降, 可使用缓冲试剂维持pH在8~9之间, 如La2O3[44]等。由于N原子相对于O易被氧化, 光解水制氧可能会生成N2[42], 所有光解制氧时需要加入RuO2等试剂及时将空穴从g-C3N4中导出。g-C3N4光解水制氧的能力较弱, 这可能是由于g-C3N4的价带(1.5V)与H2O/O2的电势(1.2V)较为接近, 热力学氧化驱动力不足造成的[42], 因此可以通过降低价带的位置来提高水解制氧的速率[23]

1.3 光催化有机合成

在有机合成中, 利用O2作为氧化剂制备某些有机物时, 由于O2氧化能力较强, 不可避免地会产生大量的过度氧化产物, g-C3N4的加入可有效地解决这一问题, 实现精确性氧化[45-46]。在反应体系中, 氧气在g-C3N4表面与光激发产生的电子结合形成•O2-, 由于空穴静电作用, •O2-吸附在g-C3N4表面。附着在g-C3N4上的反应物经•O2-氧化后吸附能力减弱, 发生脱附, 因催化体系中没有游离的•O2-而避免了被过度氧化[47]。在羟胺化合物的帮助下, g-C3N4能很好地活化丙烯基位的碳氢键, 用于相应醛酮的合成[48]。CO2的活化利用是有机合成的一个发展方向, Huang等[15]在SBA-15的孔道中合成了g-C3N4, 经金属离子修饰后能够很好地活化CO2用于环氧化合物和烯类化合物的合成。g-C3N4还能催化CO2转化为CH4[49], 这将在燃料动力设备中发挥重要作用。g-C3N4中起桥连作用的N原子是Lewis碱活性位点, 可催化Knoevenagel缩合反应[50]。除此之外, g-C3N4可催化对苯二甲酸转化生成2-羟基对苯二甲酸[29, 51]、β-酮酯的酯交换反应[52]、苯的傅-克酰基化反应[53]、苯甲醛与醇的酯化反应[54]和胺类的二聚反应[55]等。

1.4 光催化氧气还原

氧气的还原反应(ORR)是燃料电池的一个重要的半反应。碳材料中共轭的N原子可以有效地催化ORR[56], 故对ORR的催化已成为g-C3N4应用研究的一个方向[57]。O2的最低空轨道(LUMO)与g-C3N4中的共轭氮原子相互作用, 发生电荷的转移, 从而促进氧气的还原[58]。研究表明, g-C3N4对ORR的光催化是一个较为复杂的过程, 其可分为四电子还原

和双电子还原

两种[59]。经石墨烯/CoO[60]、石墨烯/Co[61]、C[62]、Fe[63]修饰的g-C3N4对ORR具有较好的催化活性, 具有较好的应用前景。

除了上面几种在光催化领域的应用外, 科研人员还开发了g-C3N4的其他用途, 例如对钢材的电化学保护[64]、合成石墨烯的模板[65]、光生电[66]、超级电容器[67]、荧光探测和成像[12, 68-69]等。

2 g-C3N4光催化性能的改进方法

g-C3N4有着广泛的应用, 但由于电子空穴复合快和比表面积不够大等原因, 实际应用效果并不理想。为此, 科研人员开发了多种方法改进g-C3N4, 例如物理复合改性、化学掺杂改性、微观结构调整等。

2.1 物理复合改性

物理复合改性是最方便的改进方法。目前, 选用的复合物主要有金属化合物(如CdS[40]、Fe3O4[27]、ZnO[28]、AgX[70](X= Br, I)、TiO2[30, 71]、SmVO4[72]、MoS2[41]、Bi2WO6[73]等)、类石墨烯材料(如石墨烯[74]、氧化石墨烯[32]、碳纳米管[75]等), 高分子化合物(如P3HT[76]、PANI[77]等)和贵金属(如金[77])等, 复合后g-C3N4的光催化性能都有一定提高(如表1)。g-C3N4与复合物质之间并非简单的物理混合, 而是充分接触并形成异质结。由于二者导带和价带位置的差异, g-C3N4光激发产生的电子或空穴转移至复合物的导带或价带中, 电子空穴分离(如图3), 复合率降低, 从而可以更高效地利用光激发产生的活性粒子。经某些颜料(如曙红Y[78])光敏化的g-C3N4对可见光的吸收增强, 光催化能力明显提高。复合物的加入还可赋予催化剂一些独特的优点, 例如g-C3N4与Fe3O4[27]、Bi25FeO40[79]复合后具有磁性, 方便了光催化剂的回收利用。

表1    g-C3N4与物质复合后光催化性能的提高

Table 1   Improvement of photocatalytic performance of g-C3N4 physically coupled with other materials

PhotocatalytApplicationPhotocatalytic performance <br/>of pure g-C3N4 [a]/ <br/>(min-1 or μmol•g•h-1)photocatalytic performance <br/>of modified g-C3N4 [a]/ <br/>(min-1 or μmol•g•h-1)Reference
Fe2O3/g-C3N4Degradation of MO0.00300.0163[27]
AgX/g-C3N4(X=Br, I)Degradation of MO0.00060.1900 [b]<br/>0.0068 [c][70]
ZnO/g-C3N4Degradation of RhB0.00780.0239[28]
SmVO4/g-C3N4Degradation of RhB0.01430.0338[72]
GdVO4/g-C3N4Degradation of RhB0.01420.0434[80]
DyVO4/g-C3N4Degradation of RhB0.01420.0365[81]
Formate anion/g-C3N4Reduction of Cr(Ⅵ)0.00100.0033[37]
MoS2/g-C3N4Hydrogen generation by hydrolysis0.1523.10[41]
CdS QDs/g-C3N4Hydrogen generation by hydrolysis384494[40]
Gr/g-C3N4Hydrogen generation by hydrolysis147451[74]
P3HT/g-C3N4Hydrogen generation by hydrolysis1.8555.0[76]
TiO2/g-C3N4Degradation of phenol0.0220.053[30]
g-C3N4/rGO/MoS2Degradation of MB0.00540.0338[82]
Reduction of Cr(Ⅵ)0.00280.0157
GO/g-C3N4Degradation of RhB0.00410.0156[32]
Degradation of 2,4-DCP0.00370.0077

[a] min-1 for degradation of pollution, μmol•g-1•h-1 for hydrogen generation by hydrolysis; [b] degradation rate of MO by utilizing AgBr/g-C3N4; [c] degradation rate of MO by utilizing AgI/g-C3N4

新窗口打开

图3   g-C3N4与物质复合后电子和空穴的分离

Fig. 3   Separation of electrons and holes of g-C3N4 physically coupled with other materials(a) Convection-type charge transfer[30, 40] (such as TiO2, CdS); (b) Advection-type charge transfer[27, 74] (such as Fe3O4, graphene); (c) Z-type charge transfer [35, 71]

2.2 化学掺杂改性

化学掺杂改性能够很好地改变g-C3N4的电子结构, 从而改善光催化性能。目前, 常采用杂环[44, 83-85]和杂原子(如S[29]、P[66]、B[86]、F[87]等)进行掺杂。杂环的引入使g-C3N4的电子电势重新分配, 氧化还原位点分离[44], 光催化性能提高(如图4、表2)。S、P、B、F等杂原子与C、N原子的电负性不同, 它们的引入必然引起电子在整个网络中的不均匀, 导致电子结构的改变[88-89], 从而影响g-C3N4的光催化性能(如表2)。异类元素的引入容易导致不对称掺杂或杂质, 这些都可以作为电子空穴的复合中心, 从而不利于光催化性能的提高, 故Dong等[90]研究了C的自掺杂对g-C3N4光催化性能的影响, 发现掺杂的C取代了g-C3N4网络中起桥连作用的N, 扩大了电子的离域范围, 增加了电导率, 降低了带隙, 光催化性能得到了提高。

图4   引入不同的杂环对g-C3N4水解制氢速率的影响[83]

Fig. 4   Influence of different heterocycles introduced into g-C3N4 on the rate of hydrogen production[83]Every figure (μmol/h) below heterocycles means the rate of hydrogen production and the rate of hydrogen production of unmodified g-C3N4 is 18 μmol/h

表2    化学掺杂对g-C3N4光催化性能的影响

Table 2   Influence of chemical binding modification on photocatalytic performance of g-C3N4

Introduced<br/>componentApplicationPhotocatalytic performance of unmodified g-C3N4[a]<br/>/(μmol•h-1, min-1 or %)Photocatalytic performance<br/>of modified g-C3N4[a]/<br/>(μmol•h-1, min-1 or %)Reference
PMDA<br/> Hydrogen generation by hydrolysis7.020.6[44]
Oxygen generation by hydrolysis0.87.7
Degradation of MO0.00500.0557
ABN<br/> Hydrogen generation by hydrolysis18[b]147[b][83]
127[c]229[c]
BA<br/> Hydrogen generation by hydrolysis148.2[d]253.1[d][84]
6.5[e]29.4[e]
B, FOxidation of cyclohexane1.6[f]5.3[f][91]
FHydrogen generation by hydrolysis4.913.0[87]
Oxidation of benzene0.00010.0021
SHydrogen generation by hydrolysis20[d]160[d][29]
10[e]75[e]
BDegradation of RhB0.0550.199[86]
CDegradation of RhB0.00810.0362[90]
Reduction of Cr(Ⅵ)0.00100.0017
Hydrogen generation by hydrolysis17.825.3

[a]: μmol/h for hydrogen and oxygen generation by hydrolysis, min-1 for degradation of pollution, % for oxidation of cyclohexane; [b]: ABN was introduced into bulk g-C3N4; [c]: ABN was introduced into mg-C3N4; [d]: The catalytic system was irradiated in light of λ>300 nm; [e]: The catalytic system was irradiated in light of λ>420 nm; [f]: The Conversion rate of cyclohexane

新窗口打开

2.3 微观结构调整

在现有的g-C3N4光催化体系中, 都需要催化剂分散在溶剂中并与目标物充分接触, 活性粒子经催化剂表面作用于目标物, 所以g-C3N4的比表面积和微观形貌也影响了其光催化性能。因此, g-C3N4光催化性能的提高也可通过g-C3N4微观结构的多孔化和低维化来实现。多孔、纳米颗粒、纳米棒、纳米薄层等结构的g-C3N4, 比表面积较大、结晶度较高, 光催化性能明显提高(如表3)。

表3    微观结构对g-C3N4光催化性能的影响

Table 3   Influence of microstructure on the photocatalytic performance of g-C3N4

MicrostructureApplicationPhotocatalytic performance of bulk g-C3N4[a] <br/>/(μmol•h-1, min-1 or %)Photocatalytic performance<br/>of modified g-C3N4[a]/<br/>(μmol•h-1, min-1 or %)Reference
Porous structureDegradation of RhB0.0140.131[94]
Porous structureOxidation of toluene24[b]>99[b][47]
Porous structureFriedel-Crafts reaction of benzene0[c]90[c][53]
NanosheetDegradation of RhB0.00120.0163[20]
NanorodHydrogen generation by hydrolysis2884[23]
Hydrogen generation by hydrolysis3.97
NanorodDegradation of MB0.0017[d]0.0025[d][97]
0.0021[e]0.0029[e]
NanosheetHydrogen generation by hydrolysis31.0[f]169.7[f][51]
10.7[g]31.8[g]
NanosheetHydrogen generation by hydrolysis10.493.1[39]

[a]: μmol/h for hydrogen generation by hydrolysis, min-1 for degradation of pollution, % for oxidation of toluene and Friedel-Crafts reaction of benzene; [b]: Formaldehyde content in production; [c]: The conversion rate of benzene; [d]: The catalytic system was irradiated in light of λ>420 nm; [e]: The catalytic system was irradiated in light of λ>290 nm; [f]: The catalytic system was irradiated in ultraviolet light; [g]: The catalytic system was irradiated in visible light

新窗口打开

2.3.1 多孔结构

利用SiO2作为硬模板, 可合成出多孔结构的g-C3N4[45, 52-53, 92-94](如图5(a)), 其光催化苯的傅-克酰基化反应、光解水制氢和对醇的选择性氧化的能力明显提高。多孔结构使g-C3N4比表面积增加, 电子的捕捉位点增多, 减缓了电子空穴对的复合, 使其能克服带隙略微增加带来的不利影响而提高光催化性能[94]

多孔g-C3N4合成后, 需要去除硬模板, 这往往需要使用剧毒的HF[92]或NH4HF2[47], 对人体的伤害较大。Xu等[95]在前驱体中加入硫脲合成出多孔g-C3N4。同样, Dong等[94]用三聚氰胺的盐酸季铵盐作为前驱体, 也合成出多孔的g-C3N4。硫脲和盐酸等软模板的加入, 不仅促使多孔结构的形成, 而且有效避免剧毒物质的使用。另外, 还可使用刻蚀液(如碱液[38])将g-C3N4中不稳定的区域刻蚀掉, 得到多孔的g-C3N4

2.3.2 纳米颗粒和纳米棒

除了多孔结构外, 还可利用空间限制直接合成法[23, 96]或合成打碎法[97]将g-C3N4做成纳米颗粒[96] (如图5(b))和纳米棒结构[23](如图5(c))。这些纳米结构某些方向的尺寸较小, 减少了缺陷, 提高了结晶度, 缩短了光激发产生的电子和空穴转移至g-C3N4表面的距离, 使之较快地被利用, 降低了电子空穴的复合率。

2.3.3 纳米薄层

g-C3N4具有类石墨烯的结构, 所以可以将g-C3N4做成纳米薄片甚至单层的结构(如图5(d))。目前, 制备g-C3N4纳米薄层结构主要采用剥离法, 包括热剥离和溶剂剥离。热剥离是将g-C3N4在空气中进行热处理, 块状结构逐渐分解, 最后留下纳米薄层[20,51]。对块状g-C3N4进行溶剂剥离常使用的溶剂为水[12, 68]和异丙醇(IPA)[39]等。Wu等[14]经计算得出, 双层g-C3N4具有很好的光吸收性能, 但目前难以精确控制g-C3N4的层数。

图5   不同微观结构的g-C3N4

Fig. 5   Different microstructures of g-C3N4(a) Porous structure [94]; (b) Nanoparticle[96]; (c) Nanorod[23]; (d) Nanosheet[51]

除了上述方法外, 还有一些其他的改性手段, 例如利用NaNO3引入活性缺陷[98]等。单一的改性方法对光催化性能的提高都是有限的, 同时应用多种改性方法[83, 99]有望获得更好的效果。

3 结语与展望

g-C3N4是一种新型的非金属光催化剂, 仅由C、N组成, 价格便宜。其带隙约为2.7 eV, 在太阳光照射下, 价带电子跃迁, 形成电子-空穴对, 并进一步产生活性粒子, 催化污染物的分解、水解制氢制氧和氧气的还原, 另外还可实现有机物的精确合成。在这几种光催化反应类型中, g-C3N4光解污染物和水的效果较好, 研究较多, 大多的改进方法也都是针对这两种光催化类型的。

由于电子空穴复合较快、比表面积小等原因, g-C3N4的光催化性能不是很理想, 目前已开发出三种主要的改进方法, 即物理复合改性、化学掺杂改性和微观结构调整。物理复合改性可降低电子空穴的复合率, 提高电子或空穴的利用率; 化学掺杂改性可以很好地调整g-C3N4的电子结构; 微观结构调整可增大比表面积, 使活性位点增多。这三种改进方法中, 物理复合改性研究较多, 机理较为清楚, 光催化性能的提高也较为明显。

g-C3N4的结构独特、光催化效果良好和改进方法简单, 使之成为光催化领域的研究热点, 对其的开发和利用必然引起未来环境治理与新能源开发的重大革新, 但目前其还面临着以下几个困难和挑战:

(1) 虽然有许多改性方法, 但g-C3N4的可见光吸收主要集中在蓝紫光, 对可见光的利用有限, 因而光催化性能仍不高。

(2) 各种改性方法也有一定的缺陷, 选用的复合物质大都含有Ti、Zn、Sm、Ag等贵重金属, 不仅价格昂贵, 且对水体有一定的污染。对g-C3N4进行化学掺杂时难以精确控制, 易引入杂质。微观结构也难以达到精确控制, 结构的控制方法较为单一, 且效果有限。

(3) 在催化某些有机合成物时, 虽然能够实现产物的精确化, 但反应进行的较慢, 反应物的转化率偏低。

(4) 实验室中合成的g-C3N4往往含有大量的缺陷, 结晶度不高, 且在水中的分散性较差, 制约了光催化性能的提高。

The authors have declared that no competing interests exist.

作者声明没有竞争性利益关系.


参考文献

[1] TADA H, JIN Q, NISHIJIMA H, et al.

Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst

. Angewandte Chemie International Edition, 2011, 50(15): 3501-3505.

[本文引用: 1]     

[2] XU T, ZHANG L, CHENG H, et al.

Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study

. Applied Catalysis B: Environmental, 2011, 101(3/4): 382-387.

[本文引用: 1]     

[3] HE K, LI M, GUO L.

Preparation and photocatalytic activity of PANI-CdS composites for hydrogen evolution

. International Journal of Hydrogen Energy, 2012, 37(1): 755-759.

[本文引用: 1]     

[4] MIAO Y, PAN G, HUO Y, et al.

Aerosol-spraying preparation of Bi2MoO6: a visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity

. Dyes and Pigments, 2013, 99(2): 382-389.

[本文引用: 1]     

[5] WANG Y, SHI Z, FAN C, et al.

Synthesis, characterization, and photocatalytic properties of BiOBr catalyst

. Journal of Solid State Chemistry, 2013, 199: 224-229.

[本文引用: 1]     

[6] BAI S, SHEN X, LV H, et al.

Assembly of Ag3PO4 nanocrystals on graphene-based nanosheets with enhanced photocatalytic performance

. Journal of Colloid and Interface Science, 2013, 405: 1-9.

[本文引用: 1]     

[7] WANG X, BLECHERT S, ANTONIETTI M.

Polymeric graphitic carbon nitride for heterogeneous photocatalysis

. ACS Catalysis, 2012, 2(8): 1596-1606.

[本文引用: 3]     

[8] WANG F, NG W K H, YU J C, et al.

Red phosphorus: an elemental photocatalyst for hydrogen formation from water

. Applied Catalysis B: Environmental, 2012, 111-112: 409-414.

[本文引用: 1]     

[9] LI C, CAO C B, ZHU H S.

Graphitic carbon nitride thin films deposited by electrodeposition

. Materials Letters, 2004, 58(12/13): 1903-1906.

[本文引用: 2]     

[10] LOTSCH B V, SCHNICK W.

From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials

. Chemistry of Materials, 2006, 18(7): 1891-1900.

[11] WIRNHIER E, D BLINGER M, GUNZELMANN D, et al.

Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1-x)3•LiCl]: a crystalline 2D carbon nitride network

. Chemistry - A European Journal, 2011, 17(11): 3213-3221.

[12] ZHANG X, XIE X, WANG H, et al.

Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging

. Journal of the American Chemical Society, 2013, 135(1): 18-21.

[本文引用: 3]     

[13] BOJDYS M J,M LLER J O, ANTONIETTI M, et al.

Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride

. Chemistry - A European Journal, 2008, 14(27): 8177-8182.

[本文引用: 1]     

[14] WU F, LIU Y, YU G, et al.

Visible-light-absorption in graphitic C3N4 bilayer: enhanced by interlayer coupling

. The Journal of Physical Chemistry Letters, 2012, 3(22): 3330-3334.

[本文引用: 1]     

[15] HUANG Z, LI F, CHEN B, et al.

Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion

. Applied Catalysis B: Environmental, 2013, 136-137: 269-277.

[本文引用: 4]     

[16] KROKE E, SCHWARZ M, HORATH-BORDON E, et al.

Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures

. New Journal of Chemistry, 2002, 26(5): 508-512.

[本文引用: 1]     

[17] MA H A, JIA X P, CHEN L X, et al.

High-pressure pyrolysis study of C3NH6: a route to preparing bulk C3N4

. Journal of Physics: Condensed Matter, 2002, 14(44): 11269-11273.

[本文引用: 2]     

[18] GUO Q, XIE Y, WANG X, et al.

Characterization of well-crystal-lized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures

. Chemical Physics Letters, 2003, 380(1/2): 84-87.

[本文引用: 1]     

[19] LI Y, ZHANG J, WANG Q, et al.

Nitrogen-rich carbon nitride hollow vessels: synthesis, characterization, and their properties

. The Journal of Physical Chemistry B, 2010, 114(29): 9429-9434.

[本文引用: 1]     

[20] DONG F, WANG Z, SUN Y, et al.

Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity

. Journal of Colloid and Interface Science, 2013, 401: 70-79.

[本文引用: 4]     

[21] XIN G, MENG Y.

Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue

. Journal of Chemistry, 2013, 2013: 1-5.

[本文引用: 5]     

[22] JI H, CHANG F, HU X, et al.

Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation

. Chemical Engineering Journal, 2013, 218: 183-190.

[本文引用: 2]     

[23] LI X H, ZHANG J, CHEN X, et al.

Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion

. Chemistry of Materials, 2011, 23(19): 4344-4348.

[本文引用: 5]     

[24] JORGE A B, MARTIN D J,DHANOA M T S, et al.

H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials

. The Journal of Physical Chemistry C, 2013, 117(14): 7178-7185.

[本文引用: 1]     

[25] DING G, WANG W, JIANG T, et al.

Highly selective synthesis of phenol from benzene over a vanadium-doped graphitic carbon nitride catalyst

. ChemCatChem, 2013, 5(1): 192-200.

[本文引用: 1]     

[26] ZHAI H S, CAO L, XIA X H.

Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction

. Chinese Chemical Letters, 2013, 24(2): 103-106.

[本文引用: 1]     

[27] ZHOU X, JIN B, CHEN R, et al.

Synthesis of porous Fe3O4/g- C3N4 nanospheres as highly efficient and recyclable photocatalysts

. Materials Research Bulletin, 2013, 48(4): 1447-1452.

[本文引用: 6]     

[28] LIU W, WANG M, XU C, et al.

Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study

. Journal of Molecular Catalysis A: Chemical, 2013, 368-369: 9-15.

[本文引用: 4]     

[29] LIU G, NIU P, SUN C, et al.

Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4

. Journal of the American Chemical Society, 2010, 132(33): 11642-11648.

[本文引用: 3]     

[30] ZHAO S, CHEN S, YU H, et al.

g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation

. Separation and Purification Technology, 2012, 99: 50-54.

[本文引用: 2]     

[31] MIRANDA C, MANSILLA H, Yan E Z J, et al.

Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method

. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253: 16-21.

[本文引用: 1]     

[32] LIAO G, CHEN S, QUAN X, et al.

Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation

. Journal of Materials Chemistry, 2012, 22(6): 2721-2726.

[本文引用: 2]     

[33] SUN C, CHEN C, MA W, et al.

Photocatalytic debromination of decabromodiphenyl ether by graphitic carbon nitride

. Science ChinaChemistry, 2012, 55(12): 2532-2536.

[本文引用: 1]     

[34] KATSUMATA K I, MOTOYOSHI R, MATSUSHITA N, et al.

Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas

. Journal of Hazardous Materials, 2013, 260: 475-482.

[本文引用: 1]     

[35] KONDO K, MURAKAMI N, YE C, et al.

Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride

. Applied Catalysis B: Environmental, 2013, 142-143: 362-367.

[本文引用: 2]     

[36] LIU W, WANG M, XU C, et al.

Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties

. Chemical Engineering Journal, 2012, 209: 386-393.

[本文引用: 2]     

[37] DONG G, ZHANG L.

Synthesis and enhanced Cr(VI) photoreduction property of formate anion containing graphitic carbon nitride

. The Journal of Physical Chemistry C, 2013, 117(8): 4062-4068.

[本文引用: 2]     

[38] SANO T, TSUTSUI S, KOIKE K, et al.

Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase

. Journal of Materials Chemistry A, 2013, 1(21): 6489-6496.

[本文引用: 4]     

[39] YANG S, GONG Y, ZHANG J, et al.

Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light

. Advanced Materials, 2013, 25(17): 2452-2456.

[本文引用: 2]     

[40] SHAO-WEN C, YU-PENG Y, JUN F, et al.

In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation

.International Journal of Hydrogen Energy, 2013, 38(3): 1258-1266.

[本文引用: 3]     

[41] GE L, HAN C, XIAO X, et al.

Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity

. International Journal of Hydrogen Energy, 2013, 38(17): 6960-6969.

[本文引用: 2]     

[42] WANG X, MAEDA K, THOMAS A, et al.

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

. Nat. Mater., 2009, 8(1): 76-80.

[本文引用: 4]     

[43] HONG J, WANG Y, WANG Y, et al.

Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water

. ChemSusChem, 2013: 1-7.

[本文引用: 1]     

[44] CHU S, WANG Y, GUO Y, et al.

Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property

. ACS Catalysis, 2013, 3(5): 912-919.

[本文引用: 4]     

[45] SU F, MATHEW S C, LIPNER G, et al.

mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light

. Journal of the American Chemical Society, 2010, 132(46): 16299-16301.

[本文引用: 2]     

[46] LI X H, CHEN J S, WANG X, et al.

Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons

. Journal of the American Chemical Society, 2011, 133(21): 8074-8077.

[本文引用: 1]     

[47] LI X H, WANG X, ANTONIETTI M.

Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity

. ACS Catalysis, 2012, 2(10): 2082-2086.

[本文引用: 2]     

[48] ZHANG P, WANG Y, YAO J, et al.

Visible-light-induced metal-free allylic oxidation utilizing a coupled photocatalytic system of g-C3N4 and N-Hydroxy compounds

. Advanced Synthesis & Catalysis, 2011, 353(9): 1447-1451.

[本文引用: 1]     

[49] YUAN Y P, CAO S W, LIAO Y S, et al.

Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production

. Applied Catalysis B: Environmental, 2013, 140-141: 164-168.

[本文引用: 1]     

[50] TAN B, XU J, XUE B, et al.

Mesoporous graphitic carbon nitride: synthesis and application towards knoevenagel condensation reactions

. Chemistry, 2013, 76(2): 150-156.

[本文引用: 1]     

[51] NIU P, ZHANG L, LIU G, et al.

Graphene-like carbon nitride nanosheets for improved photocatalytic activities

. Advanced Functional Materials, 2012, 22(22): 4763-4770.

[本文引用: 3]     

[52] JIN X, BALASUBRAMANIAN V V, SELVAN S T, et al.

Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst

. Angewandte Chemie, 2009, 121(42): 8024-8027.

[本文引用: 2]     

[53] GOETTMANN F, FISCHER A, ANTONIETTI M, et al.

Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene

. Angewandte Chemie International Edition, 2006, 45(27): 4467-4471.

[本文引用: 2]     

[54] SONG L, ZHANG S, WU X, et al.

Graphitic C3N4 photocatalyst for esterification of benzaldehyde and alcohol under visible light radiation

. Industrial & Engineering Chemistry Research, 2012, 51(28): 9510-9514.

[本文引用: 1]     

[55] SU F, MATHEW S C, M HLMANN L, et al.

Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light

. Angewandte Chemie International Edition, 2011, 50(3): 657-660.

[本文引用: 1]     

[56] IKEDA T, BOERO M, HUANG S F, et al.

Carbon alloy catalysts: active sites for oxygen reduction reaction

. The Journal of Physical Chemistry C, 2008, 112(38): 14706-14709.

[本文引用: 1]     

[57] ZHENG Y, LIU J, LIANG J, et al.

Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis

. Energy & Environmental Science, 2012, 5(5): 6717-6731.

[本文引用: 1]     

[58] ASPERA S M, KASAI H, KAWAI H.

Density functional theory-based analysis on O2 molecular interaction with the tri-s- triazine-based graphitic carbon nitride

. Surface Science, 2012, 606(11-12): 892-901.

[本文引用: 1]     

[59] ZHENG Y, JIAO Y, JARONIEC M, et al.

Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction

. Small, 2012, 8(23): 3550-3566.

[本文引用: 1]     

[60] JIN J, FU X, LIU Q, et al.

A highly active and stable electrocatalyst for the oxygen reduction reaction based on a graphene-supported g-C3N4@cobalt oxide core-shell hybrid in alkaline solution

. Journal of Materials Chemistry A, 2013, 1(35): 10538-10545.

[本文引用: 1]     

[61] LIU Q, ZHANG J.

Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells

. Langmuir, 2013, 29(11): 3821-3828.

[本文引用: 1]     

[62] ZHENG Y, JIAO Y, CHEN J, et al.

Nanoporous graphitic- C3 N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction

. Journal of the American Chemical Society, 2011, 133(50): 20116-20119.

[本文引用: 1]     

[63] LI S, WANG J T, CHEN X Y, et al.

Catalytic performance of heat-treated Fe-melamine/C and Fe-g-C3N4/C electrocatalysts for oxygen reduction reaction

. Acta Phys. -Chim. Sin., 2013, 29(4): 792-798.

[本文引用: 1]     

[64] BU Y, CHEN Z, YU J, et al.

A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion

. Electrochimica Acta, 2013, 88: 294-300.

[本文引用: 1]     

[65] LI X H, KURASCH S, KAISER U, et al.

Synthesis of monolayer- patched graphene from glucose

. Angewandte Chemie International Edition, 2012, 51(38): 9689-9692.

[本文引用: 1]     

[66] ZHANG Y, ANTONIETTI M.

Phosphorus-doped carbon nitride solid enhanced electrical conductivity and photocurrent generation

. Chemistry - An Asian Journal, 2010, 132(18): 6294-6295.

[本文引用: 2]     

[67] XU L, XIA J, XU H, et al.

Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance

. Journal of Power Sources, 2014, 245: 866-874.

[本文引用: 1]     

[68] TIAN J, LIU Q, ASIRI A M, et al.

Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+

. Analytical Chemistry, 2013, 85(11): 5595-5599.

[本文引用: 2]     

[69] CHENG C, HUANG Y, TIAN X, et al.

Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+

. Analytical Chemistry, 2012, 84(11): 4754-4759.

[本文引用: 1]     

[70] XU H, YAN J, XU Y, et al.

Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity

. Applied Catalysis B: Environmental, 2013, 129: 182-193.

[本文引用: 1]     

[71] YU J, WANG S, LOW J, et al.

Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air

. Physical Chemistry Chemical Physics, 2013, 15(39): 16883-16890.

[本文引用: 2]     

[72] LI T, ZHAO L, HE Y, et al.

Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation

. Applied Catalysis B: Environmental, 2013, 129: 255-263.

[本文引用: 1]     

[73] GUI M S, WANG P F, YUAN D, et al.

Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalysts

. Chinese Journal of Inorganic Chemistry, 2013, 29(10): 2057-2064.

[本文引用: 1]     

[74] XIANG Q, YU J, JARONIEC M.

Preparation and enhanced visible-light photocatalytic H2-production activity of graphene /C3N4 composites

. The Journal of Physical Chemistry C, 2011, 115(15): 7355-7363.

[本文引用: 2]     

[75] SURYAWANSHI A, DHANASEKARAN P, MHAMANE D, et al.

Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: electronic and morphological effects

. International Journal of Hydrogen Energy, 2012, 37(12): 9584-9589.

[本文引用: 1]     

[76] YAN H, HUANG Y.

Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light

. Chemical Communications, 2011, 47(14): 4168-4170.

[本文引用: 1]     

[77] GE L, HAN C, LIU J.

In situ synthesis and enhanced visible light photocatalytic activities of novel PANI-g-C3N4 composite photocatalysts

. Journal of Materials Chemistry, 2012, 22(23): 11843-11850.

[本文引用: 2]     

[78] MIN S, LU G.

Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation

. The Journal of Physical Chemistry C, 2012, 116(37): 19644-19652.

[本文引用: 1]     

[79] SUN A W, CHEN H, SONG C Y, et al.

Synthesis of Bi25FeO40- g-C3N4 magnetic catalyst and its photocatalytic performance

.Environmental Chemistry, 2013, 32(5): 748-754.

[本文引用: 1]     

[80] HE Y, CAI J, LI T, et al.

Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation

. Chemical Engineering Journal, 2013, 215-216: 721-730.

[81] HE Y, CAI J, LI T, et al.

Synthesis, characterization, and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation

. Industrial & Engineering Chemistry Research, 2012, 51(45): 14729-14737.

[82] HOU Y, WEN Z, CUI S, et al.

Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity

. Advanced Materials, 2013, 25(43): 1-7.

[83] ZHANG J, ZHANG G, CHEN X, et al.

Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light

. Angewandte Chemie International Edition, 2012, 51(13): 3183-3187.

[本文引用: 4]     

[84] ZHANG J, CHEN X, TAKANABE K, et al.

Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization

. Angewandte Chemie International Edition, 2010, 49(2): 441-444.

[85] ZHENG H R, ZHANG J S, WANG X C, et al.

Modification of carbon nitride phtocatalysts by copolymerization with diaminomaleonitrile

. Acta Phys. Chim. Sin., 2012, 28(10): 2336-2342.

[本文引用: 1]     

[86] YAN S C, LI Z S, ZOU Z G.

Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation

. Langmuir, 2010, 26(6): 3894-3901.

[本文引用: 1]     

[87] WANG Y, DI Y, ANTONIETTI M, et al.

Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids

. Chemistry of Materials, 2010, 22(18): 5119-5121.

[本文引用: 1]     

[88] GE L, HAN C, XIAO X, et al.

Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts

. Materials Research Bulletin, 2013, 48(10): 3919-3925.

[本文引用: 1]     

[89] CHEN G, GAO S P.

Structure and electronic structure of S-doped graphitic C3N4 investigated by density functional theory

. Chinese Physics B, 2012, 21(10): 384-390.

[本文引用: 1]     

[90] DONG G, ZHAO K, ZHANG L.

Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4

. Chemical Communications, 2012, 48(49): 6178-6180.

[本文引用: 1]     

[91] WANG Y, ZHANG J, WANG X, et al.

Boron- and fluorine- containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation

. Angewandte Chemie International Edition, 2010, 49(19): 3356-3359.

[92] VINU A, ARIGA K, MORI T, et al.

Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride

. Advanced Materials, 2005, 17(13): 1648-1652.

[本文引用: 2]     

[93] CHEN X, JUN Y S, TAKANABE K, et al.

Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light

. Chemistry of Materials, 2009, 21(18): 4093-4095.

[94] DONG G, ZHANG L.

Porous structure dependent photoreactivity of graphitic carbon nitride under visible light

. Journal of Materials Chemistry, 2012, 22(3): 1160-1166.

[本文引用: 4]     

[95] XU J, WANG Y, ZHU Y.

Nanoporous graphitic carbon nitride with enhanced photocatalytic performance

. Langmuir, 2013, 29(33): 10566-10572.

[本文引用: 1]     

[96] GROENEWOLT M, ANTONIETTI M.

Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices

. Advanced Materials, 2005, 17(14): 1789-1792.

[本文引用: 3]     

[97] BAI X, WANG L, ZONG R, et al.

Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods

. The Journal of Physical Chemistry C, 2013, 117(19): 9952-9961.

[本文引用: 1]     

[98] CHANG F, XIE Y, LI C, et al.

A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue

. Applied Surface Science, 2013, 280: 967-974.

[本文引用: 1]     

[99] CHENG N, TIAN J, LIU Q, et al.

Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants

. ACS Applied Materials & Interfaces, 2013, 5(15): 6815-6819.

[本文引用: 1]     

版权所有 © 2019 《无机材料学报》编辑部
通信地址:上海市嘉定区和硕路585号 邮政编码:201899 电话: 021-69906267
E-mail:jim@mail.sic.ac.cn
沪ICP备05005480号-12  沪公网安备31011402010211号
本系统由北京玛格泰克科技发展有限公司设计开发

/