Research Paper

Study on the “Negative” Resistance Switching Properties in
Ti/La0.7Ca0.3MnO3/Pt Sandwiches Devices

  • LIU Xin-Jun ,
  • LI Xiao-Min ,
  • WANG Qun ,
  • YANG Rui ,
  • CAO Xun ,
  • CHEN Li-Dong
Expand
  • (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Science, Beijing 100049, China)

Received date: 2009-06-22

  Revised date: 2009-08-27

  Online published: 2010-02-20

Abstract

The La0.7Ca0.3MnO3 (LCMO) thin films with resistive switching properties were grown on Pt(111)/Ti/SiO2/Si substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) results show that the films exhibited nanocrystalline or noncrystalline. Scanning electrical microscope (SEM) and atomic force microscope (AFM) were employed to characterize the morphology of as-grown films whose surfaces are flat, smooth and dense. The results of electrical test indicate that the Ti/LCMO/Pt structures show a bipolar ‘negative’ resistive switching behavior. The detailed analysis of currentvoltage (I-V) curves domonstrate that the electrical conduction of the films at low resistance state is controlled by the space charge limited current (SCLC) mechanism, while that at high resistance state is controlled by PooleFrenkel emission (PFE) mechanism. In the continuous I-V sweeping, the value of the high resistance state fluctuates more easily than that of the low resistance state. It is also found that the anomalous changes of current appear in the each I-V scan. All these results can be qualitatively explained by the combination of the randomness of electrochemical reaction and the nonuniformity of TiOx interlayer spatial distribution.

Cite this article

LIU Xin-Jun , LI Xiao-Min , WANG Qun , YANG Rui , CAO Xun , CHEN Li-Dong . Study on the “Negative” Resistance Switching Properties in
Ti/La0.7Ca0.3MnO3/Pt Sandwiches Devices[J]. Journal of Inorganic Materials, 2010
, 15(2) : 151 -156 . DOI: 10.3724/SP.J.1077.2010.00151

References

[1]Meijer G I. Who wins the nonvolatile memory race?Science, 2008, 319(5870): 1625-1626.

[2]Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80-83.

[3]Sawa A. Resistive switching in transition metal oxides. Mater. Today, 2008, 11(6): 28-36.

[4]Zhuang W W, Pan W, Ulrich B D, et al. Novell colossal magnetoresistive thin film nonvolatile resistance random access memory(RRAM).Tech. Dig. IEDM, 2002: 193-196.

[5]Liu S Q, Wu N J, Ignatiev A. Electricpulseinduced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett., 2000, 76(19): 2749-2751.

[6]Odagawa A, Sato H, Inoue I H, et al. Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature. Phys. Rev. B, 2004, 70(22): 224403-1-4.

[7]Harada T, Ohkubo I, Tsubouchi K, et al. Trap-controlled space-chargelimited current mechanism in resistance switching at Al/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett., 2008, 92(22): 222113-1-3.

[8]Li S L, Liao Z G, Li J, et al. Resistive switching properties and low resistance state relaxation in Al/Pr0.7Ca0.3MnO3/Pt junctions. J. Phys. D: Appl. Phys., 2009, 42(4): 045411-1-6.

[9]Sawa A, Fujii T, Kawasaki M, et al. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett., 2004, 85(18): 4073-4075.

[10]Shono K, Kawano H, Yokota T, et al. Origin of negative differential resistance observed on bipolar resistance switching device with Ti/Pr0.7Ca0.3MnO3/Pt structure. Appl. Phys. Express., 2008, 1(5): 055002-1-3.

[11]Kawano H, Shono K, Yokota T, et al. Enhancement of switching capability on bipolar resistance switching device with Ta/Pr0.7Ca0.3MnO3/Pt structure. Appl. Phys. Express., 2008, 1(10): 101901-1-3.

[12]Wang Q, Shang D S, Wu Z H, et al. “Positive” and “negative” electricpulse-induced reversible resistance switching effect in Pr0.7Ca0.3MnO3 films. Appl. Phys. A, 2007, 86(3): 357-360.

[13]Shang D S, Wang Q, Chen L D, et al. Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys. Rev. B, 2006, 73(24): 245427-1-3.

[14]Dong R, Xiang W F, Lee D S, et al. Improvement of reproducible hysteresis and resistive switching in metal-La0.7Ca0.3MnO3-metal heterostructures by oxygen annealing. Appl. Phys. Lett., 2007, 90(18): 182118-1-3.

[15]Hasan M, Dong R, Choi H J, et al. Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures. Appl. Phys. Lett., 2008, 92(20): 202102-1-3.

[16]Yang R, Li X M, Yu W D, et al. The polarity origin of the bipolar resistance switching behaviors in metal/La0.7Ca0.3MnO3/Pt junctions. Appl. Phys. Lett., 2009, 95(7): 072105-1-3.

[17]Yu W D, Li X M, Wu F, et al. Effects of oxygen partial pressure on the resistance switching properties of La0.7Ca0.3MnO3 thin films prepared by pulsed laser deposition method. Proc. SPIE, 2008, 6984: 698439-1-4.

[18]Fujimoto M, Koyama H, Kobayashi S, et al. Resistivity and resistive switching properties of Pr0.7Ca0.3MnO3 thin films. Appl. Phys. Lett., 2006, 89(24): 243504-1-3.

[19]Liao Z L, Wang Z Z, Meng Y, et al. Categorization of resistive switching of metal-Pr0.7Ca0.3MnO3-metal devices. Appl. Phys. Lett., 2009, 94(25): 253503-1-3.

[20]Li S L, Shang D S, Li J, et al. Resistive switching properties in oxygendeficient Pr0.7Ca0.3MnO3 junctions with active Al top electrodes. J. Appl. Phys., 2009, 105(3): 033710-1-6.

Outlines

/