Research Paper

Developments of Point Defects in ZnGeP2 Crystals

  • ZHU Chong-Qiang ,
  • YANG Chun-Hui ,
  • WANG Meng ,
  • XIA Shi-Xing ,
  • MA Tian-Hui ,
  • LU Wei-Qiang
Expand
  • Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, China

Received date: 2008-01-15

  Revised date: 2008-03-18

  Online published: 2008-11-20

Abstract

ZnGeP2 is a nonlinear optical material which is useful for important applications in the infrared region. A serious limitation to the development of ZnGeP2-based applications is the presence of point defects in the crystals. The latest development of the point defects in ZnGeP2 is summarized in the paper. Firstly, the point defects are studied by electron paramagnetic resonance technique. The dominant point defects in ZnGeP2 are V-Zn acceptor, V0P and Ge+Zn donors, and their energy levels are E(V-Zn)=EC-(1.02±0.03)eV, E(V0P)=EV+(1.61±0.06)eV and
E(Ge+Zn)=EV+(1.70±0.03)eV. In addition, the two defects V-3Ge and VPi are observed in electron irradiated and annealed ZnGeP2, respectively. Secondly, the point defects are studied simulatively by full-potential linearized muffin-tin orbital method. The results of the dominant defects and their energy levels are in agreement with the experimental evidences. However, there still exists difference between the theoretical simulation and the actual situation, some results are discrepant with the experimental conclusions. Therefore, it is important to investigate point defects by the combination of experiment and theory.

Cite this article

ZHU Chong-Qiang , YANG Chun-Hui , WANG Meng , XIA Shi-Xing , MA Tian-Hui , LU Wei-Qiang . Developments of Point Defects in ZnGeP2 Crystals[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1089 -1095 . DOI: 10.3724/SP.J.1077.2008.01089

References

[1] Zawilski K T, Setzler S D, Schunemann P G, et al. Proceedings of SPIE, 2005, 5991: 599104-1-13.
[2] Verozubova G A, Gribenyukov A I, Mironov Yu P. Inorganic Materials, 2007, 43 (10): 1164--1169.
[3] Dimmock J O, Madarasz F L, Dietz N, et al. Applied Optics, 2001, 40 (9): 1438--1441.
[4] Dietz N, Tsveybak I, Ruderman W, et al. Applied Physics Letters, 1994, 65 (22): 2759--2761.
[5] Boyd G D, Buehler E, Storz F G. Applied Physics Letters, 1971, 18 (7): 301--304.
[6] Ruderman W, Zwieback I. Materials Research Society Symposium Proceedings, 2000, 607: 361--372.
[7] Schunemann P G, Schepler K L, Budni P A. Materials Research Society Bulletin, 1998, 23: 45--49.
[8] Henriksson M, Tiihonen M, Pasiskevicius V, et al. Optics Letters, 2006, 31 (12): 1878--1880.
[9] Barnes N P, Murray K E, Jani M G, et al. Journal of the Optical Society of America B, 1998, 15 (1): 232--238.
[10] Boyd G D, Bridges T J, Patel C K N, et al. Applied Physics Letters, 1972, 21 (11): 553--555.
[11] Mason P D, Jackson D J, Gorton E K. Optics Communications, 1994, 110: 163--166.
[12] Setzler S D, Schunemann P G, Pollak T M, et al. Journal of Applied Physics, 1999, 86 (12): 6677--6681.
[13] Schunemann P G, Budni P A, Pomeranz L, et al. Advanced Solid State Lasers, 1997, 10: 253--255.
[14] Verozubova G A, Gribenyukov A I, Korotkova V V, et al. Materials Science and Engineering B, 1997, 48: 191--197.
[15] Hobgood H M, Henningsen T, Thomas R N, et al. Journal of Applied Physics, 1993, 73 (8): 4030--4037.
[16] Hopkins F K. Laser Focus World, 1995, 31 (7): 87--93.
[17] Moldovan M, Stevens K T, Halliburton L E, et al. Materials Research Society Symposium Proceedings, 2000, 607: 445--450.
[18] Stevens K T, Setzler S D, Halliburton L E, et al. Materials Research Socielty Symposium Proceedings, 1998, 484: 549--554.
[19] Giles N C, Bai L H, Garces N Y, et al. Proceedings of SPIE, 2004, 5337: 11--21.
[20] McCrae J E, Gregg M R, Hengehold R L, et al. Applied Physics Letters, 1994, 64 (23): 3142--3144.
[21] Sodeika A, Silevicius A Z, Januskevcius Z, et al. Physica Status Solidi(a), 1982, 69 (2): 491--495.
[22] Schunemann P G, Pollak T H. Materials Research Society Bulletin, 1998, 23: 23--27.
[23] Schunemann P G, Drevinsky P J, Ohmer M C, et al. Materials Research Society Symposium Proceedings, 1995, 354: 729--734.
[24] Schunemann P G, Drevinsky P J, Ohmer M C. Materials Research Society Symposium Proceedings, 1995, 354: 579--583.
[25] Jiang X S, Miao M S, Lambrecht W R L. Physical Review B, 2005, 71 (20): 205212-1--12.
[26] Jiang X S, Miao M S, Lambrecht W R L. Physical Review B, 2006, 73 (19): 193203-1--4.
[27] Shimony Y, Kimmel G, Raz O, et al. Journal of Crystal Growth, 1999, 198/199: 583--587.
[28] Vaipolin A A. Solid State Physics, 1973, 15: 1430--1435.
[29] Xing G C, Bachmann K J, Posthill J B. Applied Physics Letters, 1990, 56 (3): 271--273.
[30] Hofmann D M, Romanov N G, Gehlhoff W, et al. Physica B, 2003, 340-342: 978--981.
[31] Lind M D, Grant R W. Journal of Chemical Physics, 1973, 58 (1): 357--362. [32] Kiel A. Solid State Communications, 1974, 15 (6): 1021--1024.
[33] Rakowsky M H, Kuhn W K, Lauderdale W J, et al. Applied Physics Letters, 1994, 64 (13): 1615--1617.
[34] Halliburton L E, Edwards G J, Scripsick M P, et al. Applied Physics Letters, 1995, 66 (20): 2670--2672.
[35] Giles N C, Halliburton L E, Schunemann P G, et al. Applied Physics Letters, 1995, 66 (14): 1758--1760.
[36] Setzler S D, Giles N C, Halliburton L E, et al. Applied Physics Letters, 1999, 74 (9): 1218--1220.
[37] Gehlhoff W, Pereira R N, Azamat D, et al. Physica B, 2001, 308-310: 1015--1019.
[38] Gehlhoff W, Azamat D, Hoffmann A. Physica Status Solidi(b), 2003, 235 (1): 151--154.
[39] Gehlhoff W, Azamat D, Hoffmann A, et al. Journal of Physics and Chemistry of Solids, 2003, 64: 1923--1927.
[40] Hohenberg P, Kohn W. Physical Review B, 1964, 136 (3): 864--871.
Outlines

/