Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of oxygen partial pressure on the structural, electrical and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that the films are highly oriented with their crystallographic c-axis perpendicular to the substrate. The grain size of ZnO:Ga films is strongly dependent on the oxygen partial pressure. With the oxygen partial pressure increasing, the grain size of the films increases first, reaches a maximum at 0.30Pa and then decreases. As the oxygen partial pressure increases, the resistivity of ZnO:Ga films decreases gradually, reaches a minimum at 0.30Pa and then increases. The lowest resistivity of ZnO:Ga films obtained at the oxygen partial pressure of 0.30Pa is 3.50×10-4Ω·cm. The average transmittance of the ZnO:Ga thin films is over 90%.
MA Quan-Bao
,
YE Zhi-Zhen
,
HE Hai-Ping
,
ZHU Li-Ping
,
ZHANG Yin-Zhu
,
ZHAO Bing-Hui
. Effects of Oxygen Partial Pressure on the Properties of Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering[J]. Journal of Inorganic Materials, 2007
, 22(6)
: 1113
-1116
.
DOI: 10.3724/SP.J.1077.2007.01113
[1] Yamamoto Y, Saito K, Takahash Ki, et al. Solar Energy Mater. Sol. Cells, 2001, 65: 125--132.
[2] Wang W W, Diao X G, Wang Z, et al. Thin Solid Films, 2005, 491: 54--60.
[3] Hirata G A, McKittrick J, Cheeks T. Thin Solid Films, 1996, 288: 29--31.
[4] Ma Q B, Ye Z Z, He H P, et al. Mater. Lett., 2007, 61: 2460--2463.
[5] Lee C, Lim K, Song J. Sol. Energy Mater Sol. Cells, 1996, 43: 37--45.
[6] Ye Z Z, Tang J F. Appl. Opt., 1989, 28: 2817--2820.
[7] Maldonado A, Guerra S T, Lira M M, et al. Sol. Energy Mater. Sol. Cells, 2006, 90: 742--752.
[8] Assuncao V, Fortunato E, Marques A, et al. Thin solid films, 2003, 427: 401--405.
[9] Yu X, Ma J, Ji F, et al. J. Cryst. Growth, 2005, 274: 474--479.
[10] Ma Q B, Ye Z Z, He H P, et al. J. Cryst. Growth, 2007, 304: 64--68.
[11] Khranovskyy V, Grossner U, Lazorenko V, et al. Superlatt. Microstruct., 2006, 39: 275--281.
[12] Gomez H, Maldonado A, Olvera M L, et al. Sol. Energy Mater. Sol. Cells, 2005, 87: 107--116.
[13] Henley S J, Ashfold M N R, Cherns D. Surf. Coat Technol., 2004, 177--178: 271--276.
[14] 陈志强, 方国家, 李 春, 等(CHENG Zhi-Qiang, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 707--712.
[15] Yamamoto T, Sakemi T, Awai K, et al. Thin Solid Films, 2004, 451--452: 439--442.
[16] Asmar R A, Juillaguet S, Ramonda M, et al. J. Cryst. Growth, 2005, 275: 512--520.
[17] Kim K H, Park K C, Ma D Y. J. Appl. Phys., 1997, 81: 7764--7772.
[18] Hong R J, Jiang X, Szyszka B, et al. Appl. Surf. Sci., 2003, 207: 341--350.
[19] Burstein E. Phys. Rev., 1954, 93: 632--633.
[20] Moss T S. Proc. Phys. Soc. London Ser. B, 1954, 67: 775--782.
[21] Lee H W, Lau S P, Wang Y G, et al. J. Cryst. Growth, 2004, 268: 596--601.
[22] Cao H T, Pei Z L, Gong J, et al. Surf. Coat. Technol., 2004, 184: 84--92.
[23] Chen M, Pei Z L, Wang X, et al. J. Vac. Sci. Technol. A, 2001, 19: 963--970.