Research Paper

Morphology and Growth Mechanism of Zirconium Oxide High-k Dielectric Films

  • MA Chun-Yu ,
  • LI Zhi ,
  • ZHANG Qing-Yu
Expand
  • 1. State Key Laboratory of Materials Modification by Laser, Ion and Electron Beam,Dalian University of Technology, Dalian 116024, China; 2. Department of Mechanical Engineering, Dalian University, Dalian 116622, China

Received date: 2006-09-04

  Revised date: 2006-11-07

  Online published: 2007-07-20

Abstract

Thin films of zirconium oxide were deposited on Si (100) substrates by reactive radio frequency magnetron sputtering. The films were characterized by high-resolution transmission electron microscope (HRTEM) and atomic force microscope (AFM) to investigate the variation of surface morphology and microstructure with oxygen partial pressures and deposition temperatures, respectively. With the increase in oxygen partial pressure ratio from 7% to 100%, the surface roughness approximatively linearly increases, and the phase transition of the films is a-ZrO2 (amorphous)→ a-ZrO2 with a little m-ZrO2 (monoclinic)
→m-ZrO2+t-ZrO2 (tetragonal)→m-ZrO2. For deposition temperatures ranging from room temperature to 550℃, the phase transition of the films is a-ZrO2 (below 250℃)→m-ZrO2 with a little a-ZrO2 (450℃)→m-ZrO2 with a little t-ZrO2 (550℃).
According to the results on the structure and surface morphology of ZrO2 thin films, the dependence of deposition temperature on surface evolution and its physical mechanism are discussed also.

Cite this article

MA Chun-Yu , LI Zhi , ZHANG Qing-Yu . Morphology and Growth Mechanism of Zirconium Oxide High-k Dielectric Films[J]. Journal of Inorganic Materials, 2007 , 22(4) : 742 -748 . DOI: 10.3724/SP.J.1077.2007.00742

References

[1] Wallace R M. Appl. Surf. Sci., 2004, 231-232: 543--551.
[2] Wilk G D, Wallace R M, Anthony J M. J. Appl. Phys., 2001, 89 (10): 5243--5275.
[3] Garner G M, Kloster G, Atwood G, et al. Microelectronics Reliability, 2005, 45: 919--924.
[4] Chang J P, Lin Y S, Berger S, et al. J. Vac. Sci. Technol. B, 2001, 19 (5): 2137--2143.b
[5] Hausmann D M, Gordon R G. J. Cryst. Growth, 2003, 249: 251--261.
[6] Bellotto M, Caridi A, Cereda E, et al. Appl. Phys. Lett., 1993, 63 (15): 2056--2068.
[7] 阎志军, 王印月, 徐闰, 等(Yan Z J, et al). 物理学报(Acta. Phys. Sin.), 2004, 53 (8): 2771--2774.
[8] Matsuoka M, Lsotani S, Miyake S, et al. J. Appl. Phys., 2000, 88 (6): 3773--3775.
[9] Venkataraj S, Kappertz O, Jayavel R, et al. J. Appl. Phys., 2002, 92 (7): 3599--3607.
[10] Amor S B, Rogier B, Nardin M, et al. Mate. Sci. Eng., 1998, B57: 28--39.
[11] 章宁琳, 宋志堂, 邢溯, 等(Zhang N L, et al). 中国激光(Chinese J. Lasers), 2003, 30 (4): 345--348.
[12] 卢红亮, 徐政, 丁士进, 等(Lu H L, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (5): 1217--1222.
[13] Perkins C M, Triplett B B, Mclntyre P C, et al. Appl. Phys. Lett., 2002, 81 (8): 1417--1419.
[14] Boulouz M, Boulouz A, Giani A, et al. Thin Solid Films, 1998, 323: 85--92.
Outlines

/