Research Paper

Preparation and Key Influencing Factors of Li4Ti5O12 as Electrode Material

  • XU Jiang-Feng ,
  • LI Jian-Ling ,
  • LI Wen-Sheng ,
  • WANG Xin-Dong
Expand
  • 1. Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; 2. Jinzhou Kaimei Power Co. Ltd., Jinzhou 121000, China; 3. Beijing Key Lab of Advanced Energy Material and Technology, Beijing 100083, China

Received date: 2006-09-28

  Revised date: 2006-11-23

  Online published: 2007-09-20

Abstract

Effects of sintering temperature, time and the lithium salts on the properties of Li4Ti5O12 synthesized by a solid-state-method were studied based on orthogonal experiments. The results show that sintering temperature is the most principal factor on the performance of Li4Ti5O12. Synthesized at proper sintering temperature with appropriate time, the product will have good electrochemical properties with finer particle size and better crystallinity. The high-rate discharge/charge property of Li4Ti5O12 prepared with LiNO3 is much better. Li4Ti5O12 obgained at the optimum condition, namely preparing with LiNO3 and sintering at 800℃ for 12h, performs well when charged and discharged with high current density. It delivers discharge capacities of 151mAh·g-1, 140mAh·g-1 and 115mAh·g-1 at the rate of 1C, 2C and 5C, respectively, and shows good reversibility.

Cite this article

XU Jiang-Feng , LI Jian-Ling , LI Wen-Sheng , WANG Xin-Dong . Preparation and Key Influencing Factors of Li4Ti5O12 as Electrode Material[J]. Journal of Inorganic Materials, 2007 , 22(5) : 879 -884 . DOI: 10.3724/SP.J.1077.2007.00879

References

[1] Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Soc., 1995, 142 (5): 1431--1435.
[2] Panero S, Satolli D, Salomon M, et al. Electrochem. Commun., 2000, 2: 810--813.
[3] Ferg E, Gummow R J, de Kock A. J. Electrochem. Soc., 1994, 141 (11): L147--L150.
[4] Zaghib K, Simoneau M, Armand M, et al. J. Power Sources, 1999, 81-82: 300--305.
[5] Wang G X, Bradhurst D H, Dou S X, et al. J. Power Sources, 1999, 83: 156--161.
[6] Bach S, Pereira-Ramos J P, Baffier N. J. Power Sources, 1999, 81-82: 273--276.
[7] Jansen A N, Kahaian A J, Kepler K D, et al. J. Power Sources, 1999, 81-82: 902--905.
[8] Amaucci G G, Badway F, Pasquier A Du, et al. J. Electrochem. Soc., 2001, 148 (8): A930--A939.
[9] Pasquier A Du, Plitz I, Gural J, et al. J. Power Sources, 2003, 113: 62--71.
[10] Harrison M R, Edwards P P, Goodenough J B. Philos. Mag. B, 1985, 52: 679--699.
[11] Colbow K M, Dahn J R, Haering R R. J. Power Sources, 1989, 26: 397--402.
[12] 高玲, 仇卫华, 赵海雷. 北京科技大学学报, 2005, 27 (1): 82--85.
[13] Chen C, Spears M, Wondre F, et al. J. Crystal Growth, 2003, 250: 139--145.
[14] 杨建文, 钟 晖, 钟海云, 等. 过程工程学报, 2005, 5 (2): 170--174.
[15] Kavan L, Kratochvilov\acuteaK, Gratzel M. J. Electroanal. Chem., 1995, 394: 93--102.
[16] Kavan L, Fattakhova D, Krtil P. J. Electrochem. Soc., 1999, 146: 1375--1379.
Outlines

/