Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (11): 1235-1244.DOI: 10.15541/jim20240158
• RESEARCH ARTICLE • Previous Articles Next Articles
MA Yongjie1(), LIU Yongsheng1, GUAN Kang2(
), ZENG Qingfeng3(
)
Received:
2024-04-01
Revised:
2024-06-21
Published:
2024-11-20
Online:
2024-06-24
Contact:
GUAN Kang, associate professor. E-mail: mskguan@scut.edu.cn;About author:
MA Yongjie (1999-), male, Master candidate. E-mail: mayongjie@mail.nwpu.edu.cn
Supported by:
CLC Number:
MA Yongjie, LIU Yongsheng, GUAN Kang, ZENG Qingfeng. Gas-phase Kinetic Study of Pyrolysis in the System of CH4+C2H5OH+Ar[J]. Journal of Inorganic Materials, 2024, 39(11): 1235-1244.
No. | Reaction | *A | n | E/(kJ·mol-1) |
---|---|---|---|---|
1 | C2H4+M<=>H+C2H3+M | 3.98×1017 | 0 | 411.144 |
2 | H+C2H4<=>H2+C2H3 | 1.32×107 | 2.5 | 47.168 |
3 | H+H+M<=>H2+M | 1.0 | 0 | 0 |
4 | CH4+M<=>H+CH3+M | 1.0×1017 | 0 | 359.232 |
5 | CH3+C2H4<=>CH4+C2H3 | 5.0×1012 | 0 | 54.428 |
6 | H2+CH3<=>H+CH4 | 2.75×104 | 2.5 | 39.435 |
7 | 2CH3+M<=>C2H6+M | 3.08×1041 | -7.0 | 11.568 |
8 | CH3+CH4<=>H+C2H6 | 8.0×1013 | 2.0 | 167.472 |
9 | C2H5<=>H+C2H4 | 2.04×1015 | 0 | 144.713 |
10 | C2H6<=>H+C2H5 | 2.08×1038 | -7.1 | 445.928 |
11 | 2CH3<=>H+C2H5 | 3.01×1013 | 0 | 56.576 |
12 | CH3+CH4<=>H2+C2H5 | 1.0×1013 | 0 | 96.296 |
13 | H+C2H5<=>H2+C2H4 | 2.0×1012 | 0 | 0 |
14 | 2C2H4<=>C2H3+C2H5 | 1.82×1014 | 0 | 270.183 |
15 | C2H3+C2H6<=>C2H4+C2H5 | 1.08×10-3 | 4.5 | 14.653 |
16 | H+C2H6<=>H2+C2H5 | 5.4×102 | 3.5 | 21.813 |
17 | CH3+C2H6<=>CH4+C2H5 | 5.5×10-1 | 4.0 | 37.757 |
18 | H+C3H6<=>CH3+C2H4 | 3.4×1013 | 0 | 14.650 |
19 | C3H6<=>CH3+C2H3 | 2.5×1014 | 0 | 417.378 |
20 | C2H4+M<=>H2+C2H2+M | 8.0×1012 | 0.4 | 371.641 |
21 | H+C2H3<=>H2+C2H2 | 3.0×1013 | 0 | 0 |
22 | C3H6<=>CH4+C2H2 | 1.8×1012 | 0 | 293.076 |
23 | C2H3+M<=>H+C2H2+M | 7.94×1014 | 0 | 130.088 |
24 | 2H+H2<=>2H2 | 9.0×1016 | -0.6 | 0 |
25 | CH3+C2H3<=>CH4+C2H2 | 2.0×1013 | 0 | 0 |
26 | 2H+H2O<=>H2+H2O | 6.0×1019 | -1.25 | 0 |
27 | H2O+C2H4(+M)<=>C2H5OH(+M) | 1.0×100 | 0 | 0 |
28 | 2C2H5<=>C2H4+C2H6 | 6.9×1013 | -0.35 | 0 |
29 | 2C2H3<=>C2H2+C2H4 | 2.9597×1013 | -0.312 | 0 |
30 | CH3+C2H5<=>CH4+C2H4 | 6.57×1014 | -0.68 | 0 |
31 | C2H3+C2H5<=>C2H2+C2H6 | 2.1064×1013 | -0.251 | 0 |
32 | CH3+CH2OH(+M)<=>C2H5OH(+M) | 1.0 | 0 | 0 |
33 | CH3+CH2OH(+M)<=>H2O+C2H4(+M) | 1.0 | 0 | 0 |
34 | C2H5OH(+M)<=>H2+CH3CHO(+M) | 7.24×1011 | 0.095 | 381.028 |
35 | HCO+CH3(+M) <=>CH3CHO(+M) | 1.0 | 0 | 0 |
36 | H+HCO<=>H2+CO | 7.34×1013 | 0 | 0 |
37 | HCO+CH3<=>CO+CH4 | 2.648×1013 | 0 | 0 |
38 | H2O+HCO<=>H+H2O+CO | 1.5×1018 | -1.0 | 71.176 |
39 | H+CH3CHO<=>H2+CO+CH3 | 2.05×109 | 1.16 | 10.069 |
40 | CH3+CH3CHO<=>CO+CH3+CH4 | 2.72×106 | 1.77 | 24.786 |
41 | HCO+M<=>CO+H+M | 1.87×1017 | -1.0 | 71.176 |
42 | CH3CHO(+M)<=>CO+CH4(+M) | 1.0 | 0 | 0 |
43 | HCO+C2H3<=>CO+C2H4 | 9.033×1013 | 0 | 0 |
44 | HCO+C2H5<=>CO+C2H6 | 4.3×1013 | 0 | 0 |
Table S1 Simplified pyrolysis mechanism of CH4+C2H5OH+Ar system
No. | Reaction | *A | n | E/(kJ·mol-1) |
---|---|---|---|---|
1 | C2H4+M<=>H+C2H3+M | 3.98×1017 | 0 | 411.144 |
2 | H+C2H4<=>H2+C2H3 | 1.32×107 | 2.5 | 47.168 |
3 | H+H+M<=>H2+M | 1.0 | 0 | 0 |
4 | CH4+M<=>H+CH3+M | 1.0×1017 | 0 | 359.232 |
5 | CH3+C2H4<=>CH4+C2H3 | 5.0×1012 | 0 | 54.428 |
6 | H2+CH3<=>H+CH4 | 2.75×104 | 2.5 | 39.435 |
7 | 2CH3+M<=>C2H6+M | 3.08×1041 | -7.0 | 11.568 |
8 | CH3+CH4<=>H+C2H6 | 8.0×1013 | 2.0 | 167.472 |
9 | C2H5<=>H+C2H4 | 2.04×1015 | 0 | 144.713 |
10 | C2H6<=>H+C2H5 | 2.08×1038 | -7.1 | 445.928 |
11 | 2CH3<=>H+C2H5 | 3.01×1013 | 0 | 56.576 |
12 | CH3+CH4<=>H2+C2H5 | 1.0×1013 | 0 | 96.296 |
13 | H+C2H5<=>H2+C2H4 | 2.0×1012 | 0 | 0 |
14 | 2C2H4<=>C2H3+C2H5 | 1.82×1014 | 0 | 270.183 |
15 | C2H3+C2H6<=>C2H4+C2H5 | 1.08×10-3 | 4.5 | 14.653 |
16 | H+C2H6<=>H2+C2H5 | 5.4×102 | 3.5 | 21.813 |
17 | CH3+C2H6<=>CH4+C2H5 | 5.5×10-1 | 4.0 | 37.757 |
18 | H+C3H6<=>CH3+C2H4 | 3.4×1013 | 0 | 14.650 |
19 | C3H6<=>CH3+C2H3 | 2.5×1014 | 0 | 417.378 |
20 | C2H4+M<=>H2+C2H2+M | 8.0×1012 | 0.4 | 371.641 |
21 | H+C2H3<=>H2+C2H2 | 3.0×1013 | 0 | 0 |
22 | C3H6<=>CH4+C2H2 | 1.8×1012 | 0 | 293.076 |
23 | C2H3+M<=>H+C2H2+M | 7.94×1014 | 0 | 130.088 |
24 | 2H+H2<=>2H2 | 9.0×1016 | -0.6 | 0 |
25 | CH3+C2H3<=>CH4+C2H2 | 2.0×1013 | 0 | 0 |
26 | 2H+H2O<=>H2+H2O | 6.0×1019 | -1.25 | 0 |
27 | H2O+C2H4(+M)<=>C2H5OH(+M) | 1.0×100 | 0 | 0 |
28 | 2C2H5<=>C2H4+C2H6 | 6.9×1013 | -0.35 | 0 |
29 | 2C2H3<=>C2H2+C2H4 | 2.9597×1013 | -0.312 | 0 |
30 | CH3+C2H5<=>CH4+C2H4 | 6.57×1014 | -0.68 | 0 |
31 | C2H3+C2H5<=>C2H2+C2H6 | 2.1064×1013 | -0.251 | 0 |
32 | CH3+CH2OH(+M)<=>C2H5OH(+M) | 1.0 | 0 | 0 |
33 | CH3+CH2OH(+M)<=>H2O+C2H4(+M) | 1.0 | 0 | 0 |
34 | C2H5OH(+M)<=>H2+CH3CHO(+M) | 7.24×1011 | 0.095 | 381.028 |
35 | HCO+CH3(+M) <=>CH3CHO(+M) | 1.0 | 0 | 0 |
36 | H+HCO<=>H2+CO | 7.34×1013 | 0 | 0 |
37 | HCO+CH3<=>CO+CH4 | 2.648×1013 | 0 | 0 |
38 | H2O+HCO<=>H+H2O+CO | 1.5×1018 | -1.0 | 71.176 |
39 | H+CH3CHO<=>H2+CO+CH3 | 2.05×109 | 1.16 | 10.069 |
40 | CH3+CH3CHO<=>CO+CH3+CH4 | 2.72×106 | 1.77 | 24.786 |
41 | HCO+M<=>CO+H+M | 1.87×1017 | -1.0 | 71.176 |
42 | CH3CHO(+M)<=>CO+CH4(+M) | 1.0 | 0 | 0 |
43 | HCO+C2H3<=>CO+C2H4 | 9.033×1013 | 0 | 0 |
44 | HCO+C2H5<=>CO+C2H6 | 4.3×1013 | 0 | 0 |
[1] | CHEN S, QIU X, ZHANG B, et al. Advances in antioxidation coating materials for carbon/carbon composites. Journal of Alloys and Compounds, 2021, 886: 161143. |
[2] | JIN X, FAN X, LU C, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. Journal of the European Ceramic Society, 2018, 38(1): 1. |
[3] | FU Q, ZHANG P, ZHUANG L, et al. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: take carbon/carbon composites and their coatings as the examples. Journal of Materials Science & Technology, 2022, 96: 31. |
[4] | BHONG M, KHAN T K H, DEVADE K, et al. Review of composite materials and applications. Materials Today: Proceedings, 2023, DOI: 10.1016/j.matpr.2023.10.026. |
[5] | MANAWI Y M, IHSANULLAH, SAMARA A, et al. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials, 2018, 11(5): 822. |
[6] | ZHENG L, WANG Y, QIN J, et al. Scalable manufacturing of carbon nanotubes on continuous carbon fibers surface from chemical vapor deposition. Vacuum, 2018, 152: 84. |
[7] | SHAH K A, TALI B A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing, 2016, 41: 67. |
[8] | WEI X, CHENG L, ZHANG L, et al. Numerical simulation of effect of methyltrichlorosilane flux on isothermal chemical vapor infiltration process of C/SiC composites. Journal of the American Ceramic Society, 2006, 89(9): 2762. |
[9] | LI H, LI A, BAI R, et al. Numerical simulation of chemical vapor infiltration of propylene into C/C composites with reduced multi-step kinetic models. Carbon, 2005, 43(14): 2937 |
[10] | KIM H G, JI W, KWON H J, et al. Full-scale multi-physics numerical analysis of an isothermal chemical vapor infiltration process for manufacturing C/C composites. Carbon, 2021, 172: 174. |
[11] | REN B, ZHANG S, HE L, et al. Effect of oxygen and hydrogen on microstructure of pyrolytic carbon deposited from thermal decomposition of methane and ethanol. Journal of Solid State Chemistry, 2018, 261: 86. |
[12] | REN J, LI K, ZHANG S, et al. Preparation of carbon/carbon composite by pyrolysis of ethanol and methane. Materials & Design, 2015, 65: 174. |
[13] | LI A, ZHANG S, REZNIK B, et al. Chemistry and kinetics of chemical vapor deposition of pyrolytic carbon from ethanol. Proceedings of the Combustion Institute, 2011, 33(2): 1843. |
[14] | LI A, ZHANG S, REZNIK B, et al. Synthesis of pyrolytic carbon composites using ethanol as precursor. Industrial & Engineering Chemistry Research, 2010, 49(21): 10421. |
[15] | MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation. International Journal of Chemical Kinetics, 1999, 31(3): 183. |
[16] | MINAKOV A V, SIMUNIN M M, RYZHKOV I I. Modelling of ethanol pyrolysis in a commercial CVD reactor for growing carbon layers on alumina substrates. International Journal of Heat and Mass Transfer, 2019, 145: 118764. |
[17] | HU C, LI H, ZHANG S, et al. A molecular-level analysis of gas-phase reactions in chemical vapor deposition of carbon from methane using a detailed kinetic model. Journal of Materials Science, 2016, 51(8): 38976. |
[18] | SHINDE V M, PRADEEP P. Detailed gas-phase kinetics and reduced reaction mechanism for methane pyrolysis involved in CVD/CVI processes. Journal of Analytical and Applied Pyrolysis, 2021, 154: 104998. |
[19] | GAO C W, ALLEN J W, GREEN W H, et al. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Computer Physics Communications, 2016, 203: 212. |
[20] | CURTISS C F, HIRSCHFELDER J O. Integration of stiff equations. Proceedings of the National Academy of Sciences, 1952, 38(3): 235. |
[21] | BENSON S W, BUSS J H. Additivity rules for the estimation of molecular properties. Thermodynamic properties. Journal of Chemical Physics, 1958, 29(3): 546. |
[22] | BENSON S W. Thermochemical kinetics:methods for the estimation of thermochemical data and rate parameters. New York: John Wiley and Sons, 1976. |
[23] | HASHEMI H, CHRISTENSEN J M, GLARBORG P. High- pressure pyrolysis and oxidation of ethanol. Fuel, 2018, 218: 247. |
[24] | SUSNOW R G, DEAN A M, GREEN W H, et al. Rate-based construction of kinetic models for complex systems. Journal of Physical Chemistry A, 1997, 101(20): 3731. |
[25] | LIU M, GRINBERG D A, JOHNSON M S, et al. Reaction mechanism generator v3.0: advances in automatic mechanism generation. Journal of Chemical Information and Modeling, 2021, 61(6): 2686. |
[26] | HUANG Q, CHEN Y, BAO Z, et al. PFR model for high-pressure reaction flow of fuel. Combustion Science and Technology, 2022, 194(11): 2268. |
[27] | GUPTA A, NIGAM S, SHINDE V M. Gas-phase kinetic of boron carbide chemical vapor deposition using BCl3+ CH4+ H2 mixture. Journal of the American Ceramic Society, 2022, 105(6): 3885. |
[28] | BRÜGGERT M, HU Z, HÜTTINGER K J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon: VI. influence of temperature using methane as a carbon source. Carbon, 1999, 37(12): 2021. |
[1] | ZHENG Jin-Huang, LI He-Jun, CUI Hong, WANG Yi, DENG Hai-Liang, YIN Zhong-Yi, YAO Dong-Mei, SU Hong. Relations between Needling Processing Parameters and Tensile Strength of C/C Composites [J]. Journal of Inorganic Materials, 2017, 32(11): 1147-1153. |
[2] | XU Jian, TANG Zhe-Peng, PENG Yu-Qing, GU Chuan-Qing, KOYO Norinaga, LI Ai-Jun. Numerical Simulation for Influence of Surface Area/Volume Ratio and Inlet Gas Pressure on Pyrolytic Carbon Texture [J]. Journal of Inorganic Materials, 2016, 31(12): 1327-1334. |
[3] | SHEN Xue-Tao, LI Wei, LI Ke-Zhi. Microstructure and Mechanical Properties of C/C-ZrC Composites [J]. Journal of Inorganic Materials, 2015, 30(5): 459-466. |
[4] | NI Xin-Ye, TANG Xiao-Bin, LIN Tao, GENG Chang-Ran, CAI Lei-Ming, GU Wei-Dong, CHEN Da. Friction of Pyrolytic Carbon Coating Prepared by Gradient CVD on Medical Carbon/Carbon Composites Surface [J]. Journal of Inorganic Materials, 2012, 27(5): 545-549. |
[5] | REN Xiao-Bin, LI He-Jun, LU Jin-Hua, GUO Ling-Jun, WANG Jie, SONG Xin-Rui. Influence of Interlayer’s Thickness on Strength of Joints between LAS Glass-ceramic and Carbon/Carbon Composites [J]. Journal of Inorganic Materials, 2011, 26(8): 847-851. |
[6] | SHEN Xue-Tao,LI Ke-Zhi,LI He-Jun,FENG Tao,ZHANG Lei-Lei,WANG Bin. Thermochemical Erosion of Hafnium Carbide Modified Carbon/Carbon Composite Throat in a Small Solid Rocket Motor [J]. Journal of Inorganic Materials, 2011, 26(4): 427-432. |
[7] | SU Zhe-An, YANG Xin, HUANG Qi-Zhong, HUANG Bai-Yun, ZHANG Ming-Yu, HUANG Yan. Influenceof Chemical Vapor Reaction SiC Coating on Mechanical Properties of C/C Composites [J]. Journal of Inorganic Materials, 2011, 26(3): 233-238. |
[8] | LI He-Jun, ZHANG Lei-Lei, LU Jin-Hua, LI Ke-Zhi, FU Qian-Gang, ZHAO Xue-Ni, CAO Sheng. Wear Mechanism of Biomedical Carbon/Carbon Composites for Artificial Hip Joints [J]. Journal of Inorganic Materials, 2010, 25(9): 999-1002. |
[9] | LI He-Jun,XUE Hui,FU Qian-Gang,ZHANG Yu-Lei,SHI Xiao-Hong,LI Ke-Zhi. Research Status and Prospect of Antioxidation Coatings for Carbon/Carbon Composites [J]. Journal of Inorganic Materials, 2010, 25(4): 337-343. |
[10] | ZHANG Lei-Lei,HU Tao,LI He-Jun,LU Jin-Hua,SHEN Xue-Tao,CAO Wei-Feng,WANG Bin. Wear Particles of Carbon/Carbon Composite Artificial Hip Joints [J]. Journal of Inorganic Materials, 2010, 25(4): 349-353. |
[11] |
YU Shou-uan,ZHANG Wei-Gang.
Effect of Heattreatment Temperature on Mechanical Properties of Pyrocarbon and Carbon/Carbon Composites [J]. Journal of Inorganic Materials, 2010, 25(3): 315-320. |
[12] | WANG Bo, HUANG Jian-Feng, LIU Miao, CAO Li-Yun, WU Jian-Peng. Influence of Deposition Voltage on the SiCn-MoSi2 Coating for C/C Composites Prepared by a Hydrothermal Electrophoretic Deposition Process [J]. Journal of Inorganic Materials, 2010, 25(12): 1291-1297. |
[13] |
WANG Ni-Na,HUANG Jian-Feng,CAO Li-Yun,WU Jian-Peng.
Influence of Temperature on Oxidation Resistance of Carbon/Carbon Composites Modified by a Hydrothermal Treatment [J]. Journal of Inorganic Materials, 2009, 24(5): 948-952. |
[14] | ZHANG Yu-Lei,LI He-Jun,FU Qian-Gang,LI Ke-Zhi,OUYANG Hai-Bo. Preparation and Performance of Pre-coated Carbon Layer for Carbon/Carbon Composites [J]. Journal of Inorganic Materials, 2009, 24(1): 125-128. |
[15] | XU Hui-Juan,YI Mao-Zhong,XIONG Xiang,HUANG Bo-Yun,LEI Bao-Ling. Study on the Temperature Field of C/C Composites with Different Carbon Matrix during Braking [J]. Journal of Inorganic Materials, 2009, 24(1): 133-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||