Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (7): 757-763.DOI: 10.15541/jim20210669
Special Issue: 【结构材料】核用陶瓷(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LUO Shilin1,2(), ZHANG Shengtai1, XU Baoliang1, WANG Lingkun1, DUAN Siyihan1, DING Yi1, ZHAO Qian1, DUAN Tao1(
)
Received:
2021-11-01
Revised:
2022-01-20
Published:
2022-07-20
Online:
2022-01-24
Contact:
DUAN Tao, professor. E-mail: duant@swust.edu.cnAbout author:
LUO Shilin (1995-), male, Master candidate. E-mail: 13890720525@139.com
Supported by:
CLC Number:
LUO Shilin, ZHANG Shengtai, XU Baoliang, WANG Lingkun, DUAN Siyihan, DING Yi, ZHAO Qian, DUAN Tao. Immobilizing Behavior of Trivalent Actinide Nuclides by YIG Ceramics[J]. Journal of Inorganic Materials, 2022, 37(7): 757-763.
Material | Normalized release rate/(g·m-2·d-1) | Ref. |
---|---|---|
Ca1.59Gd1.01Ce0.45Zr1.14Fe0.77Fe3.03O12 | 10-6-10-3 | [ |
LuAG, YAG | 10-5-10-4 | [ |
(Ca1.5GdTh0.5)(ZrFe)(Fe3)O12 | 10-6-10-3 | [ |
Ce-doped YIG | 10-5-10-4 | [ |
YIG | 10-6-10-5 | In this work |
Table 1 Normalized release rates of several different garnets
Material | Normalized release rate/(g·m-2·d-1) | Ref. |
---|---|---|
Ca1.59Gd1.01Ce0.45Zr1.14Fe0.77Fe3.03O12 | 10-6-10-3 | [ |
LuAG, YAG | 10-5-10-4 | [ |
(Ca1.5GdTh0.5)(ZrFe)(Fe3)O12 | 10-6-10-3 | [ |
Ce-doped YIG | 10-5-10-4 | [ |
YIG | 10-6-10-5 | In this work |
[1] | 考夫曼, 汤宝龙译. 核燃料循环中放射性废物的处理和处置. 北京: 原子能出版社, 1981. |
[2] | 连培生. 原子能工业. 北京: 原子能出版社, 2002. |
[3] | WHITTLE K. The Challenges of Nuclear Waste. Nuclear Materials Science. Bristal: IOP Publishing, 2016: 1-21. |
[4] | CORKHILL C, HYATT N. Nuclear Waste Management. Bristal: IOP Publishing, 2018. |
[5] |
RINGWOOD A E, KESSON S E, WARE N G, et al. Immobilisation of high level nuclear reactor wastes in SYNROC. Nature, 1979, 278: 219-223.
DOI URL |
[6] |
ORLOVA A I, OJOVAN M I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2019, 12(16): 2638-2683.
DOI URL |
[7] |
LIVSHITS T S. Stability of artificial ferrite garnets with actinides and lanthanoids in water solutions. Geology of Ore Deposits, 2008, 50(6): 470-481.
DOI URL |
[8] |
ZHANG J, LIVSHITS T S, LIZIN A A, et al. Irradiation of synthetic garnet by heavy ions and α-decay of 244Cm. Journal of Nuclear Materials, 2010, 407(3): 137-142.
DOI URL |
[9] |
GUO X, TAVAKOLI A, SUTTON S, et al. Cerium substitution in yttrium iron garnet: valence state, structure, and energetics. Chemistry of Materials, 2013, 26: 1133-1143.
DOI URL |
[10] | GELLER S. Crystal chemistry of the garnets. Zeitschrift fuer Kristallographie, 1967, 125: 1-47. |
[11] | YUDINTSEV S, LAPINA M, PTASHKIN A, et al. Accommodation of uranium into the garnet structure. Materials Research Society Symposium Proceedings, 2002, 713: 477-480. |
[12] |
GALUSKINA I O, GALUSKIN E V, ARMBRUSTER T, et al. Elbrusite-(Zr)-a new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 2010, 95(8/9): 1172-1181.
DOI URL |
[13] | YOUDINTSEVA T S. Study of synthetic ferrite garnets in context with the problem of immobilization of actinide wastes. Geology of Ore Deposits, 2005, 47: 403-409. |
[14] |
BORADE R B, SHIRSATH S E, VATS G, et al. Polycrystalline to preferred-100 texture phase transformation of yttrium iron garnet nanoparticles. Nanoscale Advances, 2019, 1: 403-413.
DOI URL |
[15] |
ZHANG S T, WANG L K, XU B L, et al. Rapid synthesis of Nd-doped Y3Fe5O12 garnet waste forms by microwave sintering. Ceramics International, 2021, 47(15): 21924-21933.
DOI URL |
[16] |
EL MAKDAH M H, EL-DAKDOUKI M H, MHANNA R, et al. Effects of neodymium substitution on the structural, optical, and magnetic properties of yttrium iron garnet nanoparticles. Applied Physics A, 2021, 127(5): 304.
DOI URL |
[17] | 高建强, 邓江峡, 郑鹏, 等. Nd2O3掺杂对YIG铁氧体微观结构及磁性能的影响. 电子元件与材料, 2016, 35(5): 40-43. |
[18] |
DUAN T, DING Y, LUO S L, et al. Radionuclides from nature to nature: recent progress in immobilization of high level nuclear wastes in SYNROC. Journal of Inorganic Materials, 2021, 36(1): 25-35.
DOI |
[19] |
STRACHAN D M. Results from long-term use of the MCC-1 static leach test method. Nuclear and Chemical Waste Management, 1983, 4(2): 177-188.
DOI URL |
[20] |
LI S, LIU J, YANG X, et al. Effect of phase evolution and acidity on the chemical stability of Zr1-xNdxSiO4-x/2 ceramics. Ceramics International, 2019, 45(3): 3052-3058.
DOI URL |
[21] | BAÑOS-LÓPEZ E, DE JESÚS F, CORTÉS-ESCOBEDO C, et al. Enhancement in Curie temperature of yttrium iron garnet by doping with neodymium. Materials, 2018, 11: 1652. |
[22] |
VEGARD L. Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik, 1921, 5(1): 17-26.
DOI URL |
[23] |
LI S, YANG X, LIU J, et al. First-principles calculations and experiments for Ce4+ effects on structure and chemical stabilities of Zr1-xCexSiO4. Journal of Nuclear Materials, 2019, 514: 276-283.
DOI URL |
[24] |
ZHANG K, HE Z, PENG L, et al. Self-propagating synthesis of Y2-xNdxTi2O7 pyrochlore and its aqueous durability as nuclear waste form. Scripta Materialia, 2018, 146: 300-303.
DOI URL |
[25] |
DING Y, LONG X, PENG S, et al. Phase evolution and aqueous durability of Zr1-x-yCexNdyO2-y/2 ceramics designed to immobilize actinides with multi-valences. Journal of Nuclear Materials, 2017, 487: 297-304.
DOI URL |
[26] |
ZHAO X, LI Y, TENG Y, et al. The structure, sintering process, and chemical durability of Ce0.5Gd0.5PO4 ceramics. Ceramics International, 2018, 44(16): 19718-19724.
DOI URL |
[27] |
DAN Y, ZHANG K, LE P, et al. Solid-state reaction synthesis and chemical stability studies in Nd-doped zirconolite-rich ceramics. Journal of Rare Earths, 2018, 36: 492-498.
DOI URL |
[28] |
CAPORUSCIO F A, SCOTT B L, XU H, et al. Garnet nuclear waste forms-solubility at repository conditions. Nuclear Engineering and Design, 2014, 266: 180-185.
DOI URL |
[29] | YUDINTSEV S, OSHEROVA A, DUBININ A, et al. Corrosion study of actinide waste forms with Garnet-type structure. Materials Research Society Symposium Proceedings, 2004, 824: 1-8. |
[30] |
LUO S L, XU Z T, LIU J, et al. The solubility, microstructure, and chemical durability of Ce-doped YIG ceramics designed as actinide waste forms. International Journal of Energy Research, 2022, 45(14): 19883-19894.
DOI URL |
[1] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[2] | WU Si,MEI Lei,HU Kong-Qiu,CHAI Zhi-Fang,NIE Chang-Ming,SHI Wei-Qun. pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers [J]. Journal of Inorganic Materials, 2020, 35(2): 243-249. |
[3] | ZUO Jun-Liang, ZHAO Yue, WU Wei, CHU Jing-Yuan, ZHANG Zhi-Wei, HONG Zhi-Yong, JIN Zhi-Jian. Intermediate Phase Evolution in YBCO Superconducting Film Fabricated by Fluorine Free MOD Method [J]. Journal of Inorganic Materials, 2018, 33(7): 773-778. |
[4] | YANG Chun-Li, YAN Min, LI Wei. Effects of In, Ta Co-doped on the Sinterability and Stability of BaCeO3 [J]. Journal of Inorganic Materials, 2016, 31(9): 955-960. |
[5] | BI Lei,TAO Ze-Tian,PENG Ran-Ran,LIU Wei. Research Progress in the Electrolyte Materials for Protonic Ceramic Membrane Fuel Cells [J]. Journal of Inorganic Materials, 2010, 25(1): 1-7. |
[6] | ZHOU Ji-Zhi,XU Xia,ZHANG Yi,QIAN Guang-Ren. Synthesis and Stability of Lead-hydroxyapatite [J]. Journal of Inorganic Materials, 2009, 24(2): 259-263. |
[7] | QIAN Guang-Ren,BAI Hong-Mei,SUN Fu-Cheng,ZHOU Ji-Zhi,SUN Wei-Min,XU Xia. Preparation and Stability of Calcium Cadmium Hydroxyapatite [J]. Journal of Inorganic Materials, 2008, 23(5): 1016-1020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||