Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (7): 773-778.DOI: 10.15541/jim20200529
Special Issue: MXene材料专辑(2020~2021); 【虚拟专辑】层状MAX,MXene及其他二维材料
• RESEARCH LETTER • Previous Articles Next Articles
LI Youbing1,2(), QIN Yanqing1,2, CHEN Ke1,2, CHEN Lu1,2, ZHANG Xiao1,2, DING Haoming1,2, LI Mian1,2, ZHANG Yiming1,2, DU Shiyu1,2, CHAI Zhifang1,2, HUANG Qing1,2(
)
Received:
2020-09-09
Revised:
2020-10-22
Published:
2021-07-20
Online:
2020-11-05
Contact:
HUANG Qing, Professor. E-mail:huangqing@nimte.ac.cn
About author:
LI Youbing(1990-), male, PhD. E-mail:liyoubing@nimte.ac.cn
Supported by:
CLC Number:
LI Youbing, QIN Yanqing, CHEN Ke, CHEN Lu, ZHANG Xiao, DING Haoming, LI Mian, ZHANG Yiming, DU Shiyu, CHAI Zhifang, HUANG Qing. Molten Salt Synthesis of Nanolaminated Sc2SnC MAX Phase[J]. Journal of Inorganic Materials, 2021, 36(7): 773-778.
Site | Element | x | y | z | Symmetry | Wyckoff symbol |
---|---|---|---|---|---|---|
M | Sc | 1/3 | 2/3 | 0.5786 | 3m | 4f |
A | Sn | 1/3 | 2/3 | 0.2500 | m2 | 2d |
X | C | 0 | 0 | 0 | m | 2a |
Site | Element | x | y | z | Symmetry | Wyckoff symbol |
---|---|---|---|---|---|---|
M | Sc | 1/3 | 2/3 | 0.5786 | 3m | 4f |
A | Sn | 1/3 | 2/3 | 0.2500 | m2 | 2d |
X | C | 0 | 0 | 0 | m | 2a |
Compound | a/nm | c/nm | C11 | C12 | C13 | C33 | C44 | C66 | B | G | E | G/B | v | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc2SnC | 0.3368 | 1.4653 | 197 | 63 | 47 | 182 | 67 | 53 | 100 | 63 | 157 | 0.630 | 0.238 | This work |
V2SnC | 0.3134 | 1.2943 | 336 | 126 | 122 | 304 | 85 | 105 | 190 | 95 | 244 | 0.500 | 0.286 | [35] |
Ti2SnC | 0.3136 | 1.3641 | 337 | 86 | 102 | 329 | 169 | 126 | 176 | 138 | 328 | 0.784 | 0.188 | [39] |
Zr2SnC | 0.3352 | 1.4681 | 269 | 80 | 107 | 290 | 148 | 94 | 157 | 110 | 368 | 0.700 | 0.215 | [39] |
Hf2SnC | 0.3308 | 1.4450 | 330 | 54 | 126 | 292 | 167 | 138 | 173 | 132 | 316 | 0.763 | 0.195 | [39] |
Nb2SnC | 0.3244 | 1.3754 | 341 | 106 | 169 | 321 | 183 | 118 | 209 | 126 | 314 | 0.603 | 0.250 | [39] |
Compound | a/nm | c/nm | C11 | C12 | C13 | C33 | C44 | C66 | B | G | E | G/B | v | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc2SnC | 0.3368 | 1.4653 | 197 | 63 | 47 | 182 | 67 | 53 | 100 | 63 | 157 | 0.630 | 0.238 | This work |
V2SnC | 0.3134 | 1.2943 | 336 | 126 | 122 | 304 | 85 | 105 | 190 | 95 | 244 | 0.500 | 0.286 | [35] |
Ti2SnC | 0.3136 | 1.3641 | 337 | 86 | 102 | 329 | 169 | 126 | 176 | 138 | 328 | 0.784 | 0.188 | [39] |
Zr2SnC | 0.3352 | 1.4681 | 269 | 80 | 107 | 290 | 148 | 94 | 157 | 110 | 368 | 0.700 | 0.215 | [39] |
Hf2SnC | 0.3308 | 1.4450 | 330 | 54 | 126 | 292 | 167 | 138 | 173 | 132 | 316 | 0.763 | 0.195 | [39] |
Nb2SnC | 0.3244 | 1.3754 | 341 | 106 | 169 | 321 | 183 | 118 | 209 | 126 | 314 | 0.603 | 0.250 | [39] |
[1] |
BARSOUM M W. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000,28(1):201-281.
DOI URL |
[2] |
SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases. Trends in Chemistry, 2009,1(2):210-223.
DOI URL |
[3] |
EKLUND P, BECKERS M, JANSSON U, et al. The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films, 2010,518(8):1851-1878.
DOI URL |
[4] |
WHITTLE K R, BLACKFORD M, AUGHTERSON M R, et al. Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2. Acta Materialia, 2010,58(13):4362-4368.
DOI URL |
[5] |
FASHANDI H, DAHLQVIST M, LU J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017,16(8):814-818.
DOI URL |
[6] | WARD J, BOWDEN D, PRESTAT E, et al. Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions. Corrosion Science, 2018,39:444-453. |
[7] |
ZHU Y, ZHOU A, JI Y, et al. Tribological properties of Ti3SiC2 coupled with different counterfaces. Ceramics International, 2012,41(5):6950-6955.
DOI URL |
[8] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253.
DOI URL |
[9] |
LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013,341(6153):1502-1505.
DOI URL |
[10] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017,2(2):16098.
DOI URL |
[11] |
LI Y B, SHAO H, LIN Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020,19(8):894-899.
DOI URL |
[12] |
NECHICHE M, GAUTHIER-BRUNET V, MAUCHAMP V, et al. Synthesis and characterization of a new (Ti1-ε,Cuε)3(Al,Cu)C2 MAX phase solid solution. Journal of the European Ceramic Society, 2019,37(2):459-466.
DOI URL |
[13] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019,141(11):4730-4737.
DOI URL |
[14] |
LI Y, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019,13(8):9198-9205.
DOI URL |
[15] |
DING H, LI Y B, LU J, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Materials Research Letters, 2019,7(12):510-516.
DOI URL |
[16] | LI Y B, LU J, LI M, et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn,A)C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(2):820-825. |
[17] |
ARYAL S, SAKIDJA R, BARSOUM M W, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Physical Status Solidi, 2014,251(8):1480-1497.
DOI URL |
[18] |
BOUHEMADOU A, KHENATA R, KHAROUBI M, et al. First-principles study of structural and elastic properties of Sc2AC (A=Al, Ga, In, Tl). Solid State Communications, 2008,146(3/4):175-180.
DOI URL |
[19] |
COVER M F, WARSCHKOW O, BILEK M M, et al. A comprehensive survey of MAX phase elastic properties. Journal of Physics: Condensed Matter, 2009,21(30):305403.
DOI URL |
[20] |
CHOWDHURY A, ALI M A, HOSSAIN M M, et al. Predicted MAX phase Sc2InC: dynamical stability, vibrational and optical properties. Physical Status Solidi, 2018,255(3):1700235.
DOI URL |
[21] |
ZHA X H, REN J C, FENG L, et al. Bipolar magnetic semiconductors among intermediate states during the conversion from Sc2C(OH)2 to Sc2CO2 MXene. Nanoscale, 2018,10(18):8763-8771.
DOI URL |
[22] |
KUCHIDA S, MURANAKA T, KAWASHIMA K, et al. Superconductivity in Lu2SnC. Physica C: Superconductivity, 2013,494:77-79.
DOI URL |
[23] |
LIU X, FECHLER N, ANTONIETTI M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chemical Society Reviews, 2013,42(21):8237-8265.
DOI URL |
[24] |
WANG B, ZHOU A, HU Q, et al. Synthesis and oxidation resistance of V2AlC powders by molten salt method. International Journal of Applied Ceramic Technology, 2017,14(5):873-879.
DOI URL |
[25] |
TIAN W B, WANG P L, KAN Y M, et al. Cr2AlC powders prepared by molten salt method. Journal of Alloys and Compounds, 2008,461(1/2):L5-L10.
DOI URL |
[26] |
GALVIN T, HYATT N C, RAINFORTH W M, et al. Molten salt synthesis of MAX phases in the Ti-Al-C system. Journal of the European Ceramic Society, 2018,38(14):4585-4589.
DOI URL |
[27] |
GUO X, WANG J, YANG S, et al. Preparation of Ti3SiC2 powders by the molten salt method. Materials Letters, 2013,111:211-213.
DOI URL |
[28] |
ROY C, BANERJEE P, BHATTACHARYYAh S. Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air. Journal of the European Ceramic Society, 2020,40(3):923-929.
DOI URL |
[29] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 2005,220:567-570.
DOI URL |
[30] |
SEGALL M, LINDAN P J, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002,14:2717-2744.
DOI URL |
[31] |
PERDEW J P, BURKE K, ERMZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL |
[32] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990,41(11):7892-7895.
DOI URL |
[33] |
FRANK W, ELSASSER C, FAHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals. Physical Review Letters, 1995,74(10):1791-1794.
DOI URL |
[34] |
PARLINSKI K, LI Z Q, KAWAZOE Y. First-principles determination of the soft mode in cubic ZrO2. Physical Review Letters, 1997,78(21):4063-4066.
DOI URL |
[35] | XU Q, ZHOU Y, ZHANG H, et al. Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. Journal of Advanced Ceramics, 2020,29(4):481-492. |
[36] | BORN M, MISRA R D. On the stability of crystal lattices. Mathematical Proceedings of the Cambridge Philosophical Society, 1940,36(4):466-478. |
[37] |
KOC H, OZISIK H, DELIGOZ E, et al. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. Journal of Molecular Modeling, 2014,20(4):2180.
DOI URL |
[38] |
PUGH S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1954,45(367):823-843
DOI URL |
[39] |
KANOUN M B, GOUMRI-SAID S, RESHAK A H. Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC. Computational Materials Science, 2009,47(2):491-500.
DOI URL |
[1] | DANG Xiao-Lin, FAN Xiao-Meng, YIN Xiao-Wei, MA Yu-Zhao, MA Xiao-Kang. Research Progress on Multi-functional Integration MAX Phases Modified Continuous Fiber-reinforced Ceramic Matrix Composites [J]. Journal of Inorganic Materials, 2020, 35(1): 29-34. |
[2] | JU Xiang-Wen, WU Ri-Min, ZHOU Ya-Zhou, MA Shuang-Biao, YANG Juan, CHENG Xiao-Nong. Application of Graphene Oxide in Synthesis of Sc2W3O12 Powder [J]. Journal of Inorganic Materials, 2015, 30(4): 374-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||