Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (2): 199-204.DOI: 10.15541/jim20190070
Special Issue: 功能陶瓷论文精选(二)
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Tong,LI Zi-Juan,GUO Ze-Kun,TIAN Yan,LIN Hao-Jian,XU Ning-Sheng,CHEN Jun,DENG Shao-Zhi(),LIU Fei(
)
Received:
2019-02-14
Revised:
2019-03-22
Published:
2020-02-20
Online:
2019-05-29
Supported by:
CLC Number:
ZHANG Tong,LI Zi-Juan,GUO Ze-Kun,TIAN Yan,LIN Hao-Jian,XU Ning-Sheng,CHEN Jun,DENG Shao-Zhi,LIU Fei. Single Crystalline SmB6 Nanostructure Arrays: Controllable Synthesis and Field Emission Property[J]. Journal of Inorganic Materials, 2020, 35(2): 199-204.
Fig. 1 (a, b) Typical low- and high-resolution SEM images of the SmB6 nanowires with inset showing typical side-view image of SmB6 nanowires, and (c, d) side- and top-view images of the SmB6 nanobelts with inset in (c) showing representative high-magnification SEM image of the SmB6 nanobelt
Morphology | Density/cm-2 | Length/μm | Mean length/μm | Mean top diameter/nm | Aspect radio | Specific surface area/μm-1 |
---|---|---|---|---|---|---|
SmB6 nanowires | 5×107 | 20-120 | 47.8 | 108 | 442 | 18.5 |
SmB6 nanobelts | 4×107 | 10-90 | 36.3 | 76 | 477 | 39.6 |
Table 1 Morphological parameters of the SmB6 nanowires and nanobelts
Morphology | Density/cm-2 | Length/μm | Mean length/μm | Mean top diameter/nm | Aspect radio | Specific surface area/μm-1 |
---|---|---|---|---|---|---|
SmB6 nanowires | 5×107 | 20-120 | 47.8 | 108 | 442 | 18.5 |
SmB6 nanobelts | 4×107 | 10-90 | 36.3 | 76 | 477 | 39.6 |
Fig. 3 (a, b) Low- and high-resolution TEM images of the SmB6 nanobelt with inset in (b) showing the corresponding SAED pattern, and (c, d) low- and high-magnification TEM images of the SmB6 nanowire with inset in (d) showing the corresponding SAED pattern
Material | Measurement | Areas of samples/cm2 | Eon/(V·μm-1) | Jmax/(μA·cm-2) | Field enhancement factor, β |
---|---|---|---|---|---|
SmB6 nanowires | Transparent anode method | 1 | 5 | 65.7 | 1461 |
SmB6 nanobelts | Transparent anode method | 1 | 3.24 | 466.16 | 1921 |
SmB6 nanowires[ | Transparent anode method | 0.49 | 6.5 | 306 | 996 |
SmB6 nanopencils[ | Transparent anode method | 0.2 | 6.9 | 237 | 1150 |
SmB6 nanowires[ | Transparent anode method | 0.785 | 2.7-4.2 | - | 2207-4741 |
LaB6 nanowires[ | Transparent anode method | - | 1.82 | 5700 | 1072 |
Carbon nanotubes[ | Transparent anode method | 0.0038 | 3.2 | 2.184×106 | 768-956 |
ZnO nanobelts[ | Anode probe method | - | 6.6 | 40170 | 700 |
Table 2 Comparison of field emission properies of some excellent cathode nanostructures
Material | Measurement | Areas of samples/cm2 | Eon/(V·μm-1) | Jmax/(μA·cm-2) | Field enhancement factor, β |
---|---|---|---|---|---|
SmB6 nanowires | Transparent anode method | 1 | 5 | 65.7 | 1461 |
SmB6 nanobelts | Transparent anode method | 1 | 3.24 | 466.16 | 1921 |
SmB6 nanowires[ | Transparent anode method | 0.49 | 6.5 | 306 | 996 |
SmB6 nanopencils[ | Transparent anode method | 0.2 | 6.9 | 237 | 1150 |
SmB6 nanowires[ | Transparent anode method | 0.785 | 2.7-4.2 | - | 2207-4741 |
LaB6 nanowires[ | Transparent anode method | - | 1.82 | 5700 | 1072 |
Carbon nanotubes[ | Transparent anode method | 0.0038 | 3.2 | 2.184×106 | 768-956 |
ZnO nanobelts[ | Anode probe method | - | 6.6 | 40170 | 700 |
[1] | DZERO MAXIM, SUN KAI, GALITSKI VICTOR , et al. Topological Kondo insulators. Physics Review Letters, 2010,104(10):2909-2915. |
[2] | LU FENG, ZHAO JIAN-ZHOU, WENG HONG-MING , et al. Correlated topological insulators with mixed valence. Physical Review Letters, 2013,110(9):096401. |
[3] | JIANG J, LI S, ZHANG T , et al. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nature Communications, 2013,4(4):3010. |
[4] | KIM D J, THOMAS S, GRANT T , et al. Surface hall effect and nonlocal transport in SmB6: evidence for surface conduction. Sci. Rep., 2013,3(11):3150. |
[5] | ZHANG XIAO-HANG, BUTCH N P, SYERS P , et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6. Phys. Rev. X, 2013,3(1):582-586. |
[6] | KIM D J, XIA J, FISK Z . Topological surface state in the Kondo insulator samarium hexaboride. Nature Materials, 2014,13(5):466-470. |
[7] | LI G, XIANG Z, YU F , et al. Two-dimensional Fermi surfaces in Kondo insulating SmB6. Science, 2014,346(6214):1208-1212. |
[8] | XU JUN-QI, HOU GUANG-HUA, LI HUI-QIAO , et al. Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Materials, 2013,5(7):e53. |
[9] | JI X H, ZHANG Q Y, XU J Q , et al. Rare-earth hexaborides nanostructures: recent advances in materials, characterization and investigations of physical properties. Progress in Solid State Chemistry, 2011,39(2):51-69. |
[10] | ZHANG HAN, TANG JIE, ZHANG QI , et al. Field emission of electrons from single LaB6 nanowires. Advanced Materials, 2010,18(1):87-91. |
[11] | SURYAWANSHI SACHIN R, KANHE NILESH, MATHE VIKAS L , et al. Extraction of the very high tunneling current and extremely stable emission current from GdB6/W‐tip source synthesized using arc plasma. Chemistryselect, 2017,2(1):562-566. |
[12] | ZHAO YAN-MING, OUYANG LIU-SHENG, ZOU CHUN-YUN , et al. Field emission from single-crystalline CeB6 nanowires. Journal of Rare Earths, 2010,28(3):424-427. |
[13] | ZHANG HAN, TANG JIE, YUAN JIN-SHI , et al. An ultrabright and monochromatic electron point source made of a LaB6 nanowire. Nature Nanotechnology, 2016,11(3):273-279. |
[14] | YANG XUN, GAN HAI-BO, TIAN YAN , et al. An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications. Chinese Physics B, 2017,26(11):503-509. |
[15] | XU J Q, ZHAO Y M, JI X H , et al. Growth of single-crystalline SmB6 nanowires and their temperature-dependent electron field emission. Journal of Physics D Applied Physics, 2009,42(13):135403. |
[16] | OGITA NORIO, NAGAI SHIINJI, OKAMOTO NAOKI , et al. Raman scattering investigation of RB6(R = Ca, La, Ce, Pr, Sm, Gd, Dy, and Yb). Phys. Rev. B, 2003,68(22):224305. |
[17] | UIJTTEWAAL M A, WIJS G A DE, GROOT R A DE . Ab initio and work function and surface energy anisotropy of LaB6. Journal of Physical Chemistry B, 2006,110(37):18459-18465. |
[18] | AONO M, NISHITANI R, OSHIMA C , et al. LaB6 and SmB6(001) surfaces studied by angle-resolved XPS, LEED and ISS. Surface Science, 1979,86(JUL):631-637. |
[19] | MICHAELSON HERBERT B . The work function of the elements and its periodicity. Journal of Applied Physics, 1977,48(11):4729-4733. |
[20] | LIU FEI, GUO TONG-YI, XU ZHUO , et al. Controlled synthesis of patterned W18O49 nanowire vertical-arrays and improved field emission performance by in situ plasma treatment. Journal of Materials Chemistry C, 2013,1(19):3217-3225. |
[21] | SUN YUN-NING, YUN KI-NAM, LETI GUILLAUME , et al. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler. Nanotechnology, 2017,28(6):065201. |
[22] | XING G Z, FANG X S, ZHANG Z , et al. Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission property. Nanotechnology, 2010,21(25):255701. |
[1] | WU Qiuqin, YAO Fenfa, JIN Chuanhong, ZHENG Yifan. One-dimensional Sub-stoichiometric W3O8 Nanowires Filled Carbon Nanotubes [J]. Journal of Inorganic Materials, 2022, 37(4): 413-419. |
[2] | XIAO Yumin, Li Bin, QIN Lizhao, LIN Hua, LI Qing, LIAO Bin. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source [J]. Journal of Inorganic Materials, 2021, 36(1): 69-74. |
[3] | Chao LEI, Fei WEI. Mass Production of α-silicon Nitride Single-crystalline Nanowires [J]. Journal of Inorganic Materials, 2019, 34(6): 667-672. |
[4] | YE Chang-Hui, GU Yu-Jia, WANG Gui-Xin, BI Li-Li. Degradation Mechanism of Silver Nanowire Transparent Conductive Films: a Review [J]. Journal of Inorganic Materials, 2019, 34(12): 1257-1264. |
[5] | WANG Xiao, WANG Ran-Ran, SHI Liang-Jing, SUN Jing. Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes [J]. Journal of Inorganic Materials, 2019, 34(1): 49-59. |
[6] | LU Chang-Jian, ZHU Fa-Quan, Yin Ji-Guang, ZHANG Jian-Bo, YU Ya-Wei, HU Xiu-Lan. Synthesis of α-MnO2 Nanowires via Facile Hydrothermal Method and Their Application in Li-O2 Battery [J]. Journal of Inorganic Materials, 2018, 33(9): 1029-1034. |
[7] | WANG Jun-Xia, ZHAO Jian-Wei, QIN Li-Rong, ZHAO Bing-Ling, JIANG Zheng-Yan. Synthesis and Supercapacitor Property of Ni-doped Co3O4 Nanowire Array [J]. Journal of Inorganic Materials, 2018, 33(5): 501-506. |
[8] | CHEN Ang-Ran, ZHAO Wei, CUI Hou-Lei, ZHI Jian, HUANG Fu-Qiang. TiO2 Nanowires Infiltrated with Graphene-decorated Mesoporous TiO2 for Enhanced Dye-sensitized Solar Cell [J]. Journal of Inorganic Materials, 2015, 30(8): 891-896. |
[9] | QIU Zhi-Wen, YANG Xiao-Peng, HAN Jun1 ZENG Xue-Song, LI Xin-Hua, CAO Bing-Qiang. p-type Sodium-doped Zinc Oxide Nanowire Arrays Grown by High-pressure Pulsed Laser Deposition [J]. Journal of Inorganic Materials, 2014, 29(2): 155-161. |
[10] | ZHAO Chun-Rong, YANG Juan-Yu, DING Hai-Yang, LU Shi-Gang. Synthesis and Characterization of Core-shell SiC/SiO2 Nanowires at Low Temperature [J]. Journal of Inorganic Materials, 2013, 28(9): 971-976. |
[11] | PAN Jian-Mei, CHENG Xiao-Nong, YAN Xue-Hua, ZHANG Cheng-Hua, XU Gui-Fang. In situ Synthesis and Growth Mechanism of SiC Nanowires in SiCO Porous Ceramics [J]. Journal of Inorganic Materials, 2013, 28(5): 474-478. |
[12] | YE Yun, CHEN Tian-Yuan, CAI Shou-Jin, YAN Min, LIU Yu-Hui, GUO Tai-Liang. Effects of Different Humidity on the Growth and Field Emission Properties of CuO Nanowires [J]. Journal of Inorganic Materials, 2013, 28(12): 1359-1363. |
[13] | LI Jian-Wen, ZHOU Ai-Jun, LIU Xing-Quan, LI Jing-Ze. Si Nanowire Anode Prepared by Chemical Etching for High Energy Density Lithium-ion Battery [J]. Journal of Inorganic Materials, 2013, 28(11): 1207-1212. |
[14] | ZHANG Qian, SHAN Feng, LU Xue-Min, LU Qing-Hua. Preparation and Non-linear Optical Properties of Mesoporous Silica Film Incorporated with Gold Nanowires [J]. Journal of Inorganic Materials, 2013, 28(10): 1087-1092. |
[15] | LI Li, LEI Jing-Guo, JI Tian-Hao, ZHANG Xi-Peng. Synthesis and Characterization of Cubic P-type Semiconductor Cu1.8S-deposited TiO2 Nanobelts [J]. Journal of Inorganic Materials, 2012, 27(1): 38-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||