Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (12): 1270-1274.DOI: 10.15541/jim20140123
• Orginal Article • Previous Articles Next Articles
CHEN Xiao-Bo1, 2, YANG Wen1, DUAN Liang-Fei1, ZHANG Li-Yuan1, YANG Pei-Zhi1
Received:
2014-03-13
Revised:
2014-06-16
Published:
2014-12-20
Online:
2014-11-20
About author:
CHEN Xiao-Bo. E-mail: chenxbok@126.com
Supported by:
CLC Number:
CHEN Xiao-Bo, YANG Wen, DUAN Liang-Fei, ZHANG Li-Yuan, YANG Pei-Zhi. Microstructure and Luminous Property of Periodical Gradient Si-rich SiNx Thin Films[J]. Journal of Inorganic Materials, 2014, 29(12): 1270-1274.
Sample | TO mode of nc-Si phase | Si crystal volume fraction, Xc | ||
---|---|---|---|---|
Peak positon/cm-1 | Integrated Intensity, Ic/(a.u.) | Average size/nm | ||
1 | 516.4 | 2146.4 | 2.7 | 39.2% |
2 | 516.4 | 4349.4 | 2.7 | 41.7% |
Table 1 Curve-fitting results from Raman spectra of single-layer film and gradient-layer film
Sample | TO mode of nc-Si phase | Si crystal volume fraction, Xc | ||
---|---|---|---|---|
Peak positon/cm-1 | Integrated Intensity, Ic/(a.u.) | Average size/nm | ||
1 | 516.4 | 2146.4 | 2.7 | 39.2% |
2 | 516.4 | 4349.4 | 2.7 | 41.7% |
Fig. 5 Cross-sectional TEM images of single-layer film (a) and gradient-layer film (b). The crystalline structure of Si qu-an-tum dots is circled by red circles
Sample | Integrated intensity/(a.u.) | ||
---|---|---|---|
P1 | P2 | P3 | |
Single-layer film | 13.4 | 15.5 | 2.2 |
Gradient-layer film | 14.1 | 12.1 | 1.4 |
Table 2 Integrated intensity from PL spectra of sing-l-e-layer film and gradient-layer film
Sample | Integrated intensity/(a.u.) | ||
---|---|---|---|
P1 | P2 | P3 | |
Single-layer film | 13.4 | 15.5 | 2.2 |
Gradient-layer film | 14.1 | 12.1 | 1.4 |
[1] | PARK N M, CHOI C J, SEONG T Y, et al.Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Physical Review Letters, 2001, 86(7): 1355-1357. |
[2] | CONIBEER G, GREEN M, CHO E C, et al.Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 2008, 516(20): 6748-6756. |
[3] | HUANG S, CONIBEER G. Sputter-grown Si quantum dot nanostructures for tandem solar cells. Journal of Physics D: Applied Physics, 2013, 46(2): 024003-1-8. |
[4] | LUO J W, STRADINS P, ZUNGER A.Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy & Environmental Science, 2011, 4(7): 2546-2557. |
[5] | KUO K Y, HUANG P R, LEE P T. Super-high density Si quantum dot thin film utilizing a gradient Si-rich oxide multilayer structure. Nanotechnology, 2013, 24(19): 195701-1-7. |
[6] | JIANG C W, GREEN M A. Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. Journal of Applied Physics, 2006, 99(11): 114902-1-7. |
[7] | HA R, KIM S, KIM H J, et al.Crystallization behavior of siliconquantum dots in a silicon nitride matrix. Journal of Nanoscienceand Nanotechnology, 2012, 12(2): 1448-1452. |
[8] | LI P L, GAU C, LIU C W.Correlation between photo response and nanostructures of silicon quantum dots in annealed Si-rich nitride films. Thin Solid Films, 2013, 529: 185-189. |
[9] | JANA M, DAS D, BARUA A K.Promotion of microcrystallization by argon in moderately hydrogen diluted silane plasma. Solar Energy Materials and Solar Cells, 2002, 74(1): 407-413. |
[10] | ZI J, BÜSCHER H, FALTER C, et al. Raman shifts in Si nanocrystals. Applied Physics Letters, 1996, 69(2): 200-202. |
[11] | PAILLARD V, PUECH P, LAGUNA M A, et al.Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals. Journal of Applied Physics, 1999, 86(4): 1921-1924. |
[12] | MERCALDO L V, ESPOSITO E M, VENERI P D, et al. First and second-order Raman scattering in Si nanostructures within silicon nitride. Applied Physics Letters, 2010, 97(15): 153112-1-3. |
[13] | SCARDERA G, PUZZER T, CONIBEER G, et al. Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films. Journal of Applied Physics, 2008, 104(10): 104310-1-7. |
[14] | HASEGAWA S, HE L, AMANO Y, et al.Analysis of SiH and SiN vibrational absorption in amorphous SiNx: H films in terms of a charge-transfer model. Physical review B, 1993, 48(8): 5315-5325. |
[15] | LUCOBSKY G, YANG J, CHAO S S, et al.Nitrogen-bonding environments in glow-discharge-deposited a-Si: H films. Physical Review B, 1983, 28(6): 3234-3240. |
[16] | HASEGAWA S, ANBUTSU H, KURATA Y.Connection between Si-N and Si-H vibrational properties in amorphous SiNx: H films. Philosophical Magazine B, 1989, 59(3): 365-375. |
[17] | SO Y H, HUANG S, CONIBEER G, et al.Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers. Thin Solid Films, 2011, 519(16): 5408-5412. |
[18] | WANG M, LI D, YUAN Z, et al. Photoluminescence of Si-rich silicon nitride: defect-related states and silicon nanoclusters. Applied Physics Letters, 2007, 90(13): 131903-1-3. |
[19] | JIANG L H, ZHENG X B, ZHANG X, et al.Fabrication and characterization of silicon nanoparticles embedded in SiNx films. Journal of Inorganic Materials, 2011, 26(8): 802-806. |
[20] | DELACHAT F, CARRADA M, FERBLANTIER G, et al. Properties of silicon nanoparticles embedded in SiNx deposited by micro-wave-PECVD. Nanotechnology, 2009, 20(41): 415608-1-5. |
[21] | DELERUE C, ALLAN G, LANNOO M.Theoretical aspects of the luminescence of porous silicon. Physical Review B, 1993, 48(15): 11024-11036. |
[22] | HUISKEN F, LEDOUX G, GUILLOIS O, et al.Light-emitting silicon nanocrystals from laser pyrolysis. Advanced Materials, 2002, 14(24): 1861-1865. |
[23] | ROBERTSON J, POWELL M J.Gap states in silicon nitride. Applied Physics Letters, 1984, 44(4): 415-417. |
[24] | WANG M, LI D, YUAN Z, et al. Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters. Applied Physics Letters, 2007, 90(13): 131903-1-3. |
[1] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. |
[2] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[3] | GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor [J]. Journal of Inorganic Materials, 2022, 37(6): 676-682. |
[4] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[5] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. |
[6] | ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke. High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation [J]. Journal of Inorganic Materials, 2020, 35(4): 491-496. |
[7] | DAI Yan-Nan, YANG Shuai, SHEN Yang, SHAN Yong-Kui, YANG Fan, ZHAO Qing-Biao. Intense Yellow Emission from Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm) Phosphors Tuned through Full Range Doping [J]. Journal of Inorganic Materials, 2019, 34(11): 1210-1216. |
[8] | LI Gui-Fang, YANG Qian, WEI Yun-Ge. Synthesis and Photoluminescence Properties of Double Perovskite NaLaMgWO6: Eu3+ Red Phosphor [J]. Journal of Inorganic Materials, 2017, 32(9): 936-942. |
[9] | YAN Bo, PENG Ze-Yang, LV Bin, LIU Wei. Regrowth of CdTe Quantum Dots Induced by Circular Polarized Light and Its Effect on the Photoluminescence [J]. Journal of Inorganic Materials, 2017, 32(12): 1321-1326. |
[10] | ZHUO Shi-Yi, LIU Xi, GAO Pan, YAN Cheng-Feng, SHI Er-Wei. Luminescence of Donor-acceptor-pair in Fluorescent 4H-SiC Doped with Nitrogen, Boron and Aluminum [J]. Journal of Inorganic Materials, 2017, 32(1): 51-55. |
[11] | YANG Xiu-Chun. Influences of Ion Exchange and Thermal Treatment on Photoluminescence of Noble Metal Doped Silicate Glasses [J]. Journal of Inorganic Materials, 2016, 31(10): 1039-1045. |
[12] | YANG Feng-Jiu, LU Meng-Chen, ZHANG Xin, ZHANG Yan, WANG Lian-Jun, JIANG Wan. Facile Hydrothermal Synthesis of Oil-Soluble PbSe Quantum Dots [J]. Journal of Inorganic Materials, 2015, 30(7): 774-778. |
[13] | HAN Bin, WANG Yi-Fei, LIU Qian, HUANG Qing. Microwave Assisted Sintering and Photoluminescence Properties of Ba3Si6O12N2:Eu2+ Green Phosphors [J]. Journal of Inorganic Materials, 2015, 30(3): 330-336. |
[14] | GUO Peng, PENG Lin-Zhi, ZHANG Wei-Hai, LIU Lei, XIONG Juan. Preparation and Photoluminescence Properties of Pr-doped Mg2SnO4 Nanoparticles [J]. Journal of Inorganic Materials, 2015, 30(11): 1172-1176. |
[15] | TAN Man-Lin, WANG Yan-Tao, ZHANG Wei-Li, FU Dong-Ju, LI Dong-Shuang, WANG Xiao-Wei, MA Qing, CHEN Jian-Jun, LI Ting-Kai. Optical Characteristics of Zinc Oxide Nanoparticles with Surface Modification Using Polyethylene Glycol [J]. Journal of Inorganic Materials, 2014, 29(10): 1039-1043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||