[1] Dittrich T, Belaidi A, Ennaoui A, et al. Concepts of inorganic solid-state nanostructured solar cells. Sol. Energy Mater. Sol. Cells, 2011, 95(6): 1527–1536.[2] ZHOU Feng-Ling, LI Xiao-Min, GAO Xiang-Dong, et al. Low cost preparation and photoelectric property study of PbSe nanocrystalline films. Journal of Inorganic Materials, 2009, 24(4): 778–782.[3] Guang Z, Tao X, Tian L, et al. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J. Electroanal. Chem., 2011, 650(2): 248–251.[4] Lee H J, Wang M K, Chen P. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett., 2009, 9(12): 4221– 4227.[5] Hyun B R, Bartnik A C, Lee J K, et al. Role of solvent dielectric properties on charge transfer from PbS nanocrystals to molecules. Nano Lett., 2010, 10(1): 318–323.[6] Choi J J, Lim Y F, Santiago-Berrios M E B, et al. PbSe nanocrystal excitonic solar cells. Nano Lett., 2009, 9(11): 3749–3755.[7] Messina S, Nair M T S, Nair P K. Solar cells with Sb2S3 absorber films. Thin Solid Films, 2009, 517(7): 2503–2507.[8] Robert W, Ogah E. Thermally evaporated thin films of SnS for application in solar cell devices. Thin Solid Film,2009,517(7):4702–4705. [9] Vequizo J J M, Ichimura M. Fabrication of electrodeposited SnS/ SnO2 heterojunction solar cells. J. Appl. Phys., 2012, 51(10): 381–384. [10] Bashkirov S A, Gremenok V F, Ivanov V A, et al. Tin sulfide thin films and Mo/p-SnS/n-CdS/ZnO heterojunctions for photovoltaic applications. Thin Solid Films, 2012, 520(17): 5807–5810. [11] Guo W, Shen Y H, Wu M X, et al. Highly efficient inorganic- organic heterojuction solar cells based on SnS-sensitized spherical TiO2 electrodes. Chem. Commun., 2012, 48: 6133–6135.[12] Guo W, Shen Y H, Wu M X, et al. SnS-quantum dot solar cells using novel TiC counter electrode and organic redox couples. Chem. Eur. J., 2012, 18(25): 7862–7868.[13] Santra P K, Kamat P V. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc., 2012, 134(5): 2508–2511. [14] Tsukigase H, Suzuki Y, Berger M H. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells. J. Nanosci. Nanotech., 2011, 11(3): 1914–1922.[15] Murakami T, Gr?tzel M. Counter electrodes for DSC: application of functional materials as catalysts. Inorganica Chimica Acta, 2008, 361(3): 572–580.[16] Deepa K G, Nagaraju J. Growth and photovoltaic performance of SnS quantum dots. Mater. Sci. Eng. B, 2012, 177(13): 1023-1028. [17] Kamat P V. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res., 2012, 45 (11): 1906–1915.[18] Shalom M, Buhbut S, Tirosh S, et al. Design rules for high-efficiency quantum-dot–sensitized solar cells: a multilayer approach. J. Phys. Chem. Lett. 2012, 3(17): 2436–2441. [19] Yang H, Fan W, Vaneski A, et al. Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater., 2012, 22(13): 2821–2829. [20] Chang C H, Lee Y L. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. J. Power Sources, 2008, 185(1): 584–588.[21] Tsao H N, Burschka J, Yi C, et al. Influence of the interfacial charge transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy Environ. Sci. 2011, 4: 4921–4924. |