Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (12): 1357-1364.DOI: 10.15541/jim20200152
Special Issue: 能源材料论文精选(一):锂离子电池(2020)
Previous Articles Next Articles
YAN Yiyuan1(),JU Jiangwei2,YU Meiyan1,CHEN Shougang1(
),CUI Guanglei2(
)
Received:
2020-03-23
Revised:
2020-05-11
Published:
2020-12-20
Online:
2020-06-09
About author:
YAN Yiyuan(1994–), male, Master candidate. E-mail: yanyiyuan94@163.com
Supported by:
CLC Number:
YAN Yiyuan, JU Jiangwei, YU Meiyan, CHEN Shougang, CUI Guanglei. In-situ Polymerization Integrating 3D Ceramic Framework in All Solid-state Lithium Battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1357-1364.
Fig. 2 (a) XRD patterns of standard LLZO, the as-prepared LLZTO powders and p-LLZTO; (b) Cross sectional SEM image of p-LLZTO; (c) Pore size distribution of p-LLZTO; (d) EIS plots of dense LLZTO and p-LLZTO at room temperature with inset showing the partial magnified spectrum of the dense LLZTO
Fig. 3 (a) FT-IR spectra of PEGMEA, P(PEGMEA), and P(PEGMEA) from the 3D composite; (b) 1H NMR spectra of PEGMEA and P(PEGMEA) from the 3D composite(the solvents are deuterated N,N-dimethylformamide) with insets showing the corresponding structural formula of PEGMEA and P(PEGMEA); (c) Thermal evolution of ohmic resistance at 60 ℃ for steel|3D composite|steel symmetrical cell with inset showing the digital image of PEGMEA with/without p-LLZTO after heat-treatment at 60 ℃ for 24 h; (d) Relation between ionic conductivity of electrolyte and temperature for P(PEGMEA) and 3D composite; (e) Cross sectional SEM image and element mapping analysis of the 3D composite
Electrolyte | Lithium salt | EOa : Li+ | Conductivity of polymer/(S·cm-1) | Conductivity of composite/(S·cm-1) | Promotion factor | Ref. |
---|---|---|---|---|---|---|
PEO/LATP particles | LiClO4 | 15 : 1 | 1.3×10-6 | 9.5×10-6 | 7.5 | [ |
PEO/LLZO fibers | LiTFSIb | - | 2.5×10-6 | 2.7×10-5 | 11 | [ |
PEO/LATPc fibers | LiTFSI | 8 : 1 | 3.2×10-6 | 4.9×10-5 | 15 | [ |
PEO/3D LLZO | LiTFSI | 10 : 1 | 1.8×10-6 | 8.5×10-5 | 47 | [ |
PEO/3D LLTOd | LiTFSI | 10 : 1 | 2.2×10-6 | 8.8×10-5 | 40 | [ |
Table 1 Conductivities $(\sigma_{Li^+})$ of different solid electrolytes at room temperature
Electrolyte | Lithium salt | EOa : Li+ | Conductivity of polymer/(S·cm-1) | Conductivity of composite/(S·cm-1) | Promotion factor | Ref. |
---|---|---|---|---|---|---|
PEO/LATP particles | LiClO4 | 15 : 1 | 1.3×10-6 | 9.5×10-6 | 7.5 | [ |
PEO/LLZO fibers | LiTFSIb | - | 2.5×10-6 | 2.7×10-5 | 11 | [ |
PEO/LATPc fibers | LiTFSI | 8 : 1 | 3.2×10-6 | 4.9×10-5 | 15 | [ |
PEO/3D LLZO | LiTFSI | 10 : 1 | 1.8×10-6 | 8.5×10-5 | 47 | [ |
PEO/3D LLTOd | LiTFSI | 10 : 1 | 2.2×10-6 | 8.8×10-5 | 40 | [ |
Fig. 4 EIS plots of (a-c) pre- and (d-f) post-treated Li-Li symmetrical batteries based on (a, d) PEGMEA, (b, e) LLZTO, (c, f) 3D composites; (g) Ohmic and (h) interfacial resistance comparison of pre- and post-treated Li-Li symmetrical cells; (i) DC galvanostatic cycle of Li-Li symmetrical batteries based on P(PEGMEA) and the 3D composite under room temperature at 0.1 mA·cm-2 with insets showing D.C. galvanostatic cycle of Li-Li symmetrical battery based on LLZTO(up) and the magnified profile of Li|3D composite|Li(down)
Fig. 5 (a) Cycle performances of in-situ LiCoO2|3D composite|Li, in-situ LiCoO2|P(PEGMEA)|Li, ex-situ LiCoO2|3D composite|Li ASLBs; (b) Charge-discharge curves of in-situ LiCoO2|3D composite|Li, in-situ LiCoO2|P(PEGMEA)|Li, ex-situ LiCoO2|3D composite|Li ASLBs; Cross-sectional SEM images of the LiCoO2/3D composite interface from the disassembled (c) in-situ and (d) ex-situ LiCoO2|3D composite|Li ASLBs
[1] |
GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Advanced Materials, 2018,30(17):e1705702.
DOI URL PMID |
[2] |
BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews, 2016,116(1):140-162.
DOI URL PMID |
[3] | ZHENG F, KOTOBUKI M, SONG S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 2018,389:198-213. |
[4] | ZHANG B, TAN R, YANG L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 2018,10:139-159. |
[5] | CHEN R, QU W, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016,3(6):487-516. |
[6] | FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Advanced Energy Materials, 2018,8(11):1702657. |
[7] | YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016,5:139-164. |
[8] | MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017,2(4):16103 |
[9] | GAO Y, WANG D, LI Y C, et al. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface. Angew. Chem. Int. Ed., 2018,57(41):13608-13612. |
[10] | BUANNIC L, ORAYECH B. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chemistry of Materials, 2017,29(4):1769-1778. |
[11] | ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors. Energy & Environmental Science, 2018,11(8):1945-1976. |
[12] | CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium- metal anodes. Chem, 2019,5(1):74-96. |
[13] |
ZHA W, CHEN F, YANG D, et al. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. Journal of Power Sources, 2018,397:87-94.
DOI URL |
[14] |
ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber- enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2018,6(10):4279-4285.
DOI URL |
[15] | WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Advanced Functional Materials, 2019,29(1):1805301. |
[16] | CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer- in-ceramic”. Nano Energy, 2018,46:176-184. |
[17] | XIE H, YANG C, FU K K, et al. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Advanced Energy Materials, 2018,8(18):1703474. |
[18] | BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogel- framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed., 2018,57(8):2096-2100. |
[19] | BAE J, LI Y, ZHAO F, et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018,15:46-52. |
[20] |
LIU Y, SUN Q, ZHAO Y, et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Applied Materials & Interfaces, 2018,10(37):31240-31248.
DOI URL PMID |
[21] |
JU J, WANG Y, CHEN B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 2018,10(16):13588-13597.
DOI URL PMID |
[22] | ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019,4(5):365-373. |
[23] |
DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. Journal of the American Chemical Society, 2018,140(1):82-85.
DOI URL PMID |
[24] | PARANJAPE N, MANDADAPU P C, WU G, et al. Highly- branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity. Polymer, 2017,111:1-8. |
[25] | BAN X, ZHANG W, CHEN N, et al. A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. The Journal of Physical Chemistry C, 2018,122(18):9852-9858. |
[26] | GONG Y, FU K, XU S, et al. Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Materials Today, 2018,21(6):594-601. |
[27] |
LI D, CHEN L, WANG T, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Applied Materials & Interfaces, 2018,10(8):7069-7078.
DOI URL PMID |
[28] |
LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Applied Materials & Interfaces, 2019,11(1):784-791.
DOI URL PMID |
[29] | WANG Q, WEN Z, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem. Commun. (Camb), 2016,52(8):1637-1640. |
[30] |
HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 2017,16(5):572-579.
DOI URL PMID |
[31] | JU J, CHEN F, XIA C. Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells. Electrochimica Acta, 2014,136:422-429. |
[32] | WU B, WANG S, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy & Environmental Science, 2018,11(7):1803-1810. |
[33] |
HU J L, TIAN J, Li C L. Nanostructured carbon nitride polymer- reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Applied Materials & Interfaces, 2017,9:11615-11625.
DOI URL PMID |
[34] | HU J L, YAO Z G, CHEN K Y, et al. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Materials, 2020,28:37-46. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||