[1] |
CHEN X, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7): 2891-2959.
|
[2] |
IRIE H, WATANABE Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B, 2003, 107(23): 5483-5486.
|
[3] |
XU T H, SONG C L, LIU Y, et al. Band structures of TiO2 doped with N, C and B. J. Zhejiang Univ. Sci. B, 2006, 7(4): 299-303.
|
[4] |
LI D, HANEDA H, LABHSETWAR N K, et al. Visible- light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett., 2005, 401(4/5/6): 579-584.
|
[5] |
LI D, HANEDA H, HISHITA S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem., 2005, 126(1): 69-77.
|
[6] |
SATO S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett., 1986, 123(1/2):126-128.
|
[7] |
KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710-712.
|
[8] |
DAVIS M E. Ordered porous materials for emerging applications. Nature, 2002,417: 813-821.
|
[9] |
YANG P, ZHAO D, MARGOLESE D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396: 152-155.
|
[10] |
BACH U, LUPO D, COMTE P, et al. Solid-state dye-sensitized
|
[11] |
mesoporous TiO2 solar cells with high photon-to-electron conver sion efficiencies.Nature, 1998, 395: 583-585.
|
[12] |
HUO Q, LEON R, PETROFF P M, et al. Mesostructure design with gemini surfactants: supercage formation in a three- dimensional hexagonal array. Science, 1995, 268(5215): 1324-1327.
|
[13] |
SOLER-ILLIA G J, SANCHEZ C, LEBEAU B, et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev., 2002, 102(11): 4093-4138.
|
[14] |
SHIBATA H, OGURA T, MUKAI T, et al. Direct synthesis of mesoporous titania particles having a crystalline wall. J. Am. Chem. Soc., 2005, 127(47): 16396-16397.
|
[15] |
WU C, OHSUNA T, KUWABARA M, et al. Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation. J. Am. Chem. Soc., 2006, 128(14): 4544-4545.
|
[16] |
CHAE W, LEE S, KIM Y. Templating route to mesoporous nanocrystalline titania nanofibers. Chem. Mater., 2005, 17(12): 3072-3074.
|
[17] |
LIU H X, YANG J, WANG L, et al. An improvement on Sol-Gel method for preparing ultrafine and crystallized titania powder. Materials Science and Engineering A, 2000, 289: 241-245.
|
[18] |
FEI H, LUI Y, LI Y, et al. Selective synthesis of borated meso- macroporous and mesoporous spherical TiO2 with high photocatalytic activity. Micropor. Mesopor. Mater., 2007, 102(1/2/3): 318-324.
|
[19] |
SATO S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett., 1986, 123(1/2/3): 126-128.
|
[20] |
LIU G, ZHAO Y N, SUN C H, et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew. Chem. Int. Ed., 2008, 47(24): 4516-4520.
|
[21] |
XU J, LI J, DAI W, et al. Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response. Appl. Catal. B: Environ., 2008, 79(1): 72-80.
|
[22] |
KOROSI L, DEKANY I. Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids Surf. A, 2006, 280(1/2/3): 146-154.
|
[23] |
LI L, LIU C Y. Facile Synthesis of anatase-brookite mixed-phase N-doped TiO2 nanoparticles with high visible-light photocatalytic activity. Eur. J. Inorg. Chem., 2009, 2009(20):3727-3733.
|
[24] |
LI H X, LI J X, HUO Y N. Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions. J. Phys. Chem. B, 2006, 110(4): 1559-1565.
|