[1] Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 111–124.
[2] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432: 84–87.
[3] Tennery V J, Hang K W. Thermal and X-Ray diffraction studies of the NaNbO3-KNbO3 system. Journal of Applied Physics, 1968, 39(10): 4749–4753.
[4] Wang R, Bando H, Kidate M, et al. Effects of A-site ions on the phase transition temperatures and dielectric properties of (1?x)(Na0.5K0.5)NbO3-x AZrO3 solid solutions. Japanese Journal of Applied Physics, 2011, 50(9): 09ND10–1–5.
[5] Lei C, Ye Z G. Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system. Appli. Phys. Lett., 2008, 93(4): 042901–1–3.
[6] Zuo R, Fu J, Lv D, et al. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc., 2010, 93(9): 2783–2787.
[7] Wang R, Bando H, Katsumata T. et al. Tuning the orthorhombic–rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi: Rapid Res. Lett., 2009, 3(5): 142-144.
[8] Zhang B Y, Wu J G, Cheng X J, et al. Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl. Mater. Interfaces, 2013, 5: 7718–7725.
[9] Huan Y, Wang X H, Guo L M, et al. Low temperature sintering and enhanced piezoelectricity of lead-free (Na0.52K0.4425Li0.0375)- (Nb0.86Ta0.06Sb0.08)O3 ceramics prepared from nano-powders. J. Am. Ceram. Soc., 2013, 96(11): 3470–3475.
[10] Karaki T, Katayama T, Yoshida K, et al. Morphotropic phase boundary slope of (K,Na,Li)NbO3-BaZrO3 binary system adjusted using third component (Bi,Na)?TiO3 additive. Japanese Journal of Applied Physics, 2013, 52: 09KD11–1–4.
[11] Sarjeant W J, Clelland I W, Price R A. Capacitive components for power electronics. Proceedings of the IEEE, 2001, 89(6): 846–855.
[12] Weir R D, Nelson C W. Electrical-energy-storage Unit (EESU) Utilizing Ceramic and Integrated-circuit Technologies for Replacement of Electrochemical Batteries, US7033406, 2006.
[13] Chu B J, Zhou X, Ren K L, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science, 2006, 313(5785): 334–336.
[14] Hu W B, Liu Y, Withers R, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nature Mater., 2013, 12: 821–826
[15] Randall C A, Cross L E, Yang A, et al. High energy density ionic dielectric materials and devices: US Patent Application, 12/924908, 2011.
[16] Mischenko A S, Zhang Q, Scott J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311(5765): 1270–1271.
[17] Neese B, Chu B J, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823.
[18] Lu S G, Ro?i? B, Zhang Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett., 2010, 97(16): 162904–1–3.
[19] Peng B L, Fan H Q, Zhang Q. Giant electrocaloric effect in nano-scaled antiferroelectric and ferroelectric phases coexisted relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv. Funct. Mater., 2013, 23(23): 2987–2992.