(1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. School of Microelectronics and Solid-state Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China)
[1] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Materials, 2011, 10: 682–686.[2] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 2007, 46(41): 7778 –7781.[3] Technologyoverview[EB/OL]. http://www.sionpower.com/technology.html, 2013-08-22.[4] OXIS Jump-Starts First Commercialization Of Lithium-Sulfur Batteries[EB/OL]. http://www.hybridcars.com/oxis-jump-starts-first-commercialization-of-lithium-sulfur-batteries/, 2013-08-25.[5] HU Jing-Jing, LI Guo-Ran, GAO Xue-Ping. Current status, problems and challenges in lithium-sulfur batteries. Journal of Inorganic Materials, 2013, 28(11): 1181–1186.[6] Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery. Science, 2012, 337(6094): 563–566.[7] Cui Y M, Wen Z Y, Liu Y. A free-standing-type design for cathodes of rechargeable Li-O2 batteries. Energy Environ. Sci., 2011, 4: 4727–4734[8] Zhang T, Zhou H S. A reversible long-life lithium-air battery in ambient air. Nature Communications, 2013, 4: 1817.