[1] Choi Y S, Kang J W, Hwang D K, et al. Recent advances in ZnO-based light-emitting diodes. IEEE T. Electron. Dev., 2010, 57(1): 26–41.
[2] Huang M H, Mao S, Felck H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897–1899.
[3] 秦杰明, 田立飞, 赵东旭,等(QIN Jie-Ming, et al). 一维氧化锌纳米结构生长及器件制备研究进展. 物理学报(Acta Phys. Sin.), 2011, 60(10): 107307–1–13.
[4] Wang Z L. Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications. Chinese Sci. Bull., 2009, 54(22): 4021–1–14.
[5] Fan H J, Werner P, Zacharias M. Semiconductor nanowires: from self-organization to patterned growth. Small, 2006, 2(6): 700–717.
[6] Cao B Q, Zú?iga-Pérez J, Czekalla C, et al. Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures. J. Mater. Chem., 2010, 20(19): 3848–3854.
[7] Huang M H, Wu Y Y, Feick H N, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater., 2001, 13(2): 113–116.
[8] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 1964, 4(5): 89–90.
[9] Liu Z W, Ong C K, Yu T, et al. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room temperature photoluminescence properties. Appl. Phys. Lett., 2006, 88(5): 053110–1–3.
[10] Hartanto A B, Ning X, Nakata Y, et al. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl. Phys. A, 2004, 78(3): 299–301.
[11] Lim J H, Kang C K, Kim K K, et al. UV Electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater., 2006, 18(20): 2720–2724.
[12] Zhang X M, Lu M Y, Zhang Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire srray hrown on p-GaN yhin gilm. Adv. Mater., 2009, 21(27): 2767–2770.
[13] Xu S, Xu C, Liu Y, et al. Ordered nanowire array blue/Near-UV light emitting diodes. Adv. Mater., 2010, 22(42): 4749–4753.
[14] Ohtomo A, Kawasaki M, Kodia T, et al. MgxZn1-xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett., 1998, 72(19): 2466–1–3.
[15] Park W I, Yi G C, Kim M Y, et al. Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater., 2003, 15(6): 526–529.
[16] 王伟娜, 方庆清, 周 军, 等(WANG Wei-Na, et al). 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报(Acta Phys. Sin.), 2009, 58(5): 3461–3467.
[17] Ju Z G, Shan C X, Yang C L, et al. Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method. Appl. Phys. Lett., 2009, 94(10): 101902–1–3.
[18] Lu J G, ZhangY Z, Ye Z Z, et al. Rational synthesis and tunable optical properties of quasialigned Zn1?xMgxO nanorods. Appl. Phys. Lett., 2007, 91(19): 193108–1–3.
[19] Ganesan P G, Mcguire K, Kim H, et al. ZnO nanowires by pulsed laser vaporization: synthesis and properties. J. Nanosci. Nanotechnology., 2005, 5(7): 1125–1129.
[20] Ng H T, Li J, Smith M K, et al. Growth of epitaxial nanowires at the junctions of nanowalls. Science, 2003, 300(5623): 1249.
[21] Lin S S, Hong H I, Song J H, et al. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Lett., 2009, 9(11): 3877–3882.
[22] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949.
[23] 吴小丽, 陈长乐, 韩立安, 等(WU Xiao-Li, et al). 衬底温度对PLD 法生长的Mg0.05Zn0.95O 薄膜结构和发光特性的影响. 物理学报(Acta Phys. Sin.), 2008, 57(6): 3735–3739.
[24] ZHANG Wen, HE Yong-Ning, ZHOU Cheng-Bo, et al. Controlled growth of zinc oxide nano structures by electrochemical synthesis and their photoluminescence properties. Journal of Inorganic Materials, 2011, 26(6): 602–606.
[25] Cao B Q, Cai W P, Zeng H B, et al. Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates. J. Appl. Phys., 2006, 99(7): 073516–1–6.
[26] 高 立, 张建民(GAO Li, et al). 微量Mg掺杂ZnO薄膜的光致发光谱和带隙变化机理研究. 物理学报(Acta Phys. Sin.), 2010, 59(2): 1263–1267. |