Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (4): 452-460.DOI: 10.15541/jim20220542
• RESEARCH LETTER • Previous Articles Next Articles
WU Junlin1,2(), DING Jiyang1,3, HUANG Xinyou3, ZHU Danyang1,2, HUANG Dong1,3, DAI Zhengfa1, YANG Wenqin4,5, JIANG Xingfen4,5, ZHOU Jianrong4,5, SUN Zhijia4,5, LI Jiang1,2()
Received:
2022-09-16
Revised:
2022-10-13
Published:
2023-04-20
Online:
2022-12-30
Contact:
LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cnAbout author:
WU Junlin (1998-), male, Master candidate. E-mail: wujunlin20@mails.ucas.ac.cn
Supported by:
CLC Number:
WU Junlin, DING Jiyang, HUANG Xinyou, ZHU Danyang, HUANG Dong, DAI Zhengfa, YANG Wenqin, JIANG Xingfen, ZHOU Jianrong, SUN Zhijia, LI Jiang. Fabrication and Microstructure of Gd2O2S:Tb Scintillation Ceramics from Water-bath Synthesized Nano-powders: Influence of H2SO4/Gd2O3 Molar Ratio[J]. Journal of Inorganic Materials, 2023, 38(4): 452-460.
Fig. 4 FESEM morphologies of Gd2O2S: Tb powders with different n (a) n=1.00; (b) n=1.25; (c) n=1.50; (d) n=1.75; (e) n=2.00; (f) n=2.25; (g) n=2.50; (h) n=2.75; (i) n=3.00
Fig. 5 XEL spectra and normalized integral intensity curves in the range of 350-700 nm of Gd2O2S:Tb powders with different n (a) XEL spectra; (b) Normalized integral intensity curves; Colorful figures are available on website
Fig. 6 Relative densities of Gd2O2S:Tb ceramics vacuum pre-sintered at 1300 ℃ for 3 h and HIP post-treatment at 1450 ℃ for 3 h fabricated from the powders with different n
Fig. 7 FESEM micrograph and EDS patterns (white area) of the Gd2O2S:Tb ceramics vacuum pre-sintered at 1300 ℃ for 3 h and HIP post-treatment at 1450 ℃ for 3 h fabricated from the powders prepared with n=1.00
Fig. 8 FESEM morphologies of Gd2O2S:Tb ceramics fabricated from the powders prepared with different n (a) n=1.00; (b) n=1.25; (c) n=1.50; (d) n=1.75; (e) n=2.00; (f) n=2.25; (g) n=2.50; (h) n=2.75; (i) n=3.00
Fig. 9 XEL spectra and normalized integral intensity curves in the range of 350-700 nm of Gd2O2S:Tb ceramics fabricated from the powders with different n (a) XEL spectra; (b) Normalized integral intensity curves; Colorful figures are available on website
[1] |
YANAGIDA T. Inorganic scintillating materials and scintillation detectors. Proceedings of the Japan Academy Series B Physical and Biological Sciences, 2018, 94(2):75.
DOI URL |
[2] |
VAN EIJK C W E, BESSIèRE A, DORENBOS P.Inorganic thermal-neutron scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 529(1/2/3):260.
DOI URL |
[3] | LI J, XIE T F, KOU H M, et al. Effect of trace SiO2 addition on optical and scintillation property of Pr:Lu3Al5O12 ceramics. Journal of Inorganic Materials, 2019, 35(7):796. |
[4] | IKESUE A. Processing of Ceramics:Breakthroughs in Optical Materials. New York: Wiley, 2021: 73-141. |
[5] |
QU Z X, YU C J, WEI Y T, et al. Thermal conductivity of boron carbide under fast neutron irradiation. Journal of Advanced Ceramics, 2022, 11(3):482.
DOI |
[6] | KHARIEKY A A, EBRAHIM SARAEE K R. Synthesis and characterization of radio and thermoluminescence properties of Sm doped Gd2O3, Gd2O2S and Gd2O2SO4 nanocrystalline phosphors. Journal of Luminescence, 2020, 220: 116979. |
[7] | QIAN B F, WANG Y L, ZHAO Q R, et al. Adjustable multi-color luminescence and energy transfer of capsule-shaped Gd2O2S: Tb3+, Sm3+ phosphors. Journal of Luminescence, 2022, 244: 118715. |
[8] |
WANG W, KOU H M, LIU S P, et al. Optical and scintillation properties of Gd2O2S: Pr, Ce, F ceramics fabricated by spark plasma sintering. Ceramics International, 2015, 41(2):2576.
DOI URL |
[9] |
BLAHUTA S, VIANA B, BESSIèRE A, et al. Luminescence quenching processes in Gd2O2S:Pr3+,Ce3+ scintillating ceramics. Optical Materials, 2011, 33(10):1514.
DOI URL |
[10] | WANG W, KOU H M, LIU S P, et al. Comparison of the optical and scintillation properties of Gd2O2S: Pr, Ce ceramics fabricated by hot pressing and pressureless sintering. Optical Materials, 2015, 42: 199. |
[11] |
BAGHERI A, REZAEE EBRAHIM SARAEE K, SHAKUR H R, et al. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor. Applied Physics A, 2016, 122(5):553.
DOI URL |
[12] |
POPOVICI E J, MURESAN L, HRISTEA-SIMOC A, et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials, 2004, 27(3):559.
DOI URL |
[13] |
ZHAN Y H, AI F R, CHEN F, et al. Intrinsically zirconium-89 labeled Gd2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small, 2016, 12(21):2872.
DOI URL |
[14] | TRTIK P, HOVIND J, GRüNZWEIG C, et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institut-The Neutron Microscope Project. Physics Procedia, 2015, 69: 169. |
[15] |
WANG F, YANG B, ZHANG J C, et al. Highly enhanced luminescence of Tb3+-activated gadolinium oxysulfide phosphor by doping with Zn2+ ions. Journal of Luminescence, 2010, 130(3):473.
DOI URL |
[16] |
CHEN L, WU Y, HUO H Y, et al. Nanoscale Gd2O2S:Tb scintillators for high-resolution fluorescent imaging of cold neutrons. ACS Applied Nano Materials, 2022, 5(6):8440.
DOI URL |
[17] |
KANDARAKIS I, CAVOURAS D. Experimental and theoretical assessment of the performance of Gd2O2S:Tb and La2O2S:Tb phosphors and Gd2O2S:Tb-La2O2S:Tb mixtures for X-ray imaging. European Radiology, 2001, 11(6):1083.
PMID |
[18] | TRTIK P, LEHMANN E H. Progress in high-resolution neutron imaging at the Paul Scherrer Institut-The Neutron Microscope Project. Journal of Physics: Conference Series, 2016, 746: 012004. |
[19] |
YAN X, FERN G R, WITHNALL R, et al. Effects of the host lattice and doping concentration on the colour of Tb3+ cation emission in Y2O2S:Tb3+ and Gd2O2S:Tb3+ nanometer sized phosphor particles. Nanoscale, 2013, 5(18):8640.
DOI URL |
[20] |
GIAKOUMAKIS G E, NOMICOS C D, SANDILOS P X. Absolute efficiency of Gd2O2S:Tb screens under fluoroscopic conditions. Physics in Medicine and Biology, 1989, 34(6):673.
DOI URL |
[21] |
WESTPHAL E R, BROWN A D, QUINTANA E C, et al. Visible emission spectra of thermographic phosphors under X-ray excitation. Measurement Science and Technology, 2021, 32(9):094008.
DOI |
[22] |
WANG W, LI Y S, KOU H M, et al. Gd2O2S: Pr scintillation ceramics from powder synthesized by a novel carbothermal reduction method. Journal of the American Ceramic Society, 2015, 98(7): 2159.
DOI URL |
[23] | TRTIK P, LEHMANN E H. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 788: 67. |
[24] | YASUDA R, KATAGIRI M, MATSUBAYASHI M. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 680: 139. |
[25] |
KATARIA V, MEHTA D S. Multispectral harvesting rare-earth oxysulphide based highly efficient transparent luminescent solar concentrator. Journal of Rare Earths, 2022, 40(1):41.
DOI URL |
[26] |
HUANG X Y, DING J Y, LI J. Rare earth doped Gd2O2S scintillation ceramics. Journal of Inorganic Materials, 2021, 36(8):789.
DOI URL |
[27] |
DANIEL J H, SAWANT A, TEEPE M, et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray imagers. Sensors and Actuators A-Physical, 2007, 140(2):185.
DOI URL |
[28] | WU G Q, QIN H M, FENG S W, et al. Ultrafine Gd2O2S:Pr powders prepared via urea precipitation method using SO2/SO42- as sulfuration agent—a comparative study. Powder Technology, 2017, 305: 382. |
[29] | HE C, XIA Z G, LIU Q L. Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Optical Materials, 2015, 42: 11. |
[30] |
PEARSON R G. Hard and soft acids and bases. Journal of the American Chemical Society, 1963, 85(22):3533.
DOI URL |
[31] |
DING Y J, HAN P D, WANG L X, et al. Preparation, morphology and luminescence properties of Gd2O2S:Tb with different Gd2O3 raw materials. Rare Metals, 2015, 38(3):221.
DOI URL |
[32] |
SONG Y H, YOU H P, HUANG Y J, et al. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties. Inorganic Chemistry, 2010, 49(24):11499.
DOI URL |
[33] |
HAN P D, ZHANG L, WANG L X, et al. Investigation on the amounts of Na2CO3 and sulphur to obtain pure Y2O2S and up-conversion luminescence of Y2O2S:Er. Journal of Rare Earths, 2011, 29(9):849.
DOI URL |
[34] | LIU Q, PAN H M, CHEN X P, et al. Gd2O2S:Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Optical Materials, 2019, 94: 299. |
[35] |
WANG X J, MENG Q H, LI M T, et al. A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors. Journal of the American Ceramic Society, 2018, 102(6):3296.
DOI URL |
[36] | LIU Q, WU F, CHEN X P, et al. Fabrication of Gd2O2S:Pr scintillation ceramics from water-bath synthesized nanopowders. Optical Materials, 2020, 104: 109946. |
[37] |
WANG X J, WANG X J, WANG Z H, et al. Photo/cathodoluminescence and stability of Gd2O2S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate. Journal of the American Ceramic Society, 2018, 101(12):5477.
DOI URL |
[38] | PAN H M, LIU Q, CHEN X P, et al. Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials, 2020, 105: 109909. |
[39] | WANG X J, LI J G, MOLOKEEV M S, et al. Layered hydroxyl sulfate: controlled crystallization, structure analysis, and green derivation of multi-color luminescent (La,RE)2O2SO4 and (La,RE)2O2S phosphors (RE=Pr, Sm, Eu, Tb, and Dy). Chemical Engineering Journal, 2016, 302: 577. |
[40] |
WANG X, LI J G, ZHU Q, et al. Facile and green synthesis of (La0.95Eu0.05)2O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials, 2014, 15(1):014204.
DOI URL |
[41] |
JIANG P, LI Z P, LU W, et al. The pH value control of morphology and luminescence properties of Gd2O2S: Tb3+ phosphors. Materials, 2022, 15(2):646.
DOI URL |
[42] | LEPPERT J. Method for Producing Rare Earth Oxysulfide Powder. United States, C01F17/00, US6296824B1. 2001. 10.02. |
[43] | TERAZAWA S, NITTA H. Production Method of Rare Earth Oxysulfide, Ceramic Scintillator and Its Production Method, Scintillator Array, and Radiation Detector. United States, C09K 11/77, US9896623B2. 2018. 02.20. |
[44] |
PAWLIK N, SZPIKOWSKA-SROKA B, PIETRASIK E, et al. Photoluminescence and energy transfer in transparent glass-ceramics based on GdF3:RE3+ (RE = Tb, Eu) nanocrystals. Journal of Rare Earths, 2019, 37(11):1137.
DOI URL |
[1] | LI Jiang, DING Jiyang, HUANG Xinyou. Rare Earth Doped Gd2O2S Scintillation Ceramics [J]. Journal of Inorganic Materials, 2021, 36(8): 789-806. |
[2] | FAN Ling-Cong, SHI Ying, XIE Jian-Jun. Fabrication and Luminescent Property of Polycrystalline Cerium-doped Lutetium Oxyorthsilicate Scintillation Ceramics [J]. Journal of Inorganic Materials, 2018, 33(2): 237-244. |
[3] | LIN Ting, XU Zhi-Bin, DENG Lian-Yun, REN Yu-Ying, SHI Ying, XIE Jian-Jun. Spark Plasma Sintering of Ce3+:Lu2SiO5 Scintillation Ceramics and Its Luminescent Characteristics [J]. Journal of Inorganic Materials, 2011, 26(11): 1210-1214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||