电催化研究
电催化是电化学的重要组成部分,它是使电极、电解质界面上的电荷转移加速反应的一种催化作用。电催化的研究重点是研制高效的针对电化学反应的催化剂。
为了促进电催化相关研究发展,本刊推出"电催化研究"虚拟专题,供广大学者参考!
氧还原反应缓慢的动力学过程严重限制了燃料电池的能量转换效率, 而商用Pt/C催化剂成本太高、资源稀缺、稳定性差, 需要寻找合适的材料来取代商用的Pt/C催化剂。近年来, 氮掺杂多孔碳材料因其独特的物理和化学特性吸引了大量的关注。本文使用富含氮元素的可再生土豆作为生物质前驱体, 通过简单的一步热解过程和KOH活化方法相结合制备出了一系列氮掺杂多孔碳电催化剂; 并系统研究了KOH用量和活化温度对碳基体孔结构和电催化性能的影响。结果表明, 当活化温度为750 ℃、KOH与碳的质量比为3/1时, 所制备的催化剂(NPC-750)的氧还原活性最高, 起始电位和半波电位分别达到0.89和0.79 V (vs. RHE), 极限电流密度达到5.53 mA?cm -2。NPC-750优异的氧还原催化活性主要归因于其发达的孔结构、高的比表面积(1134.2 m 2?g -1)和合适的氮含量(1.57at%)。同时, 优异的循环稳定性和抗甲醇中毒性能进一步说明这些生物多孔碳材料是潜在的低成本氧还原电催化剂。此外, 这些高比表面积多孔碳在超级电容、吸附/分离、催化以及电池等领域也具有潜在的应用前景。
以凹凸棒石(ATP)为载体, 通过原位沉积, 结合冷冻干燥、程序焙烧工艺在其表面负载不同质量分数的类石墨相氮化碳(g-C3N4)薄层材料, 制备系列ATP/g-C3N4复合材料用于电催化析氧反应, 产物标识为ATP/g-C3N4-w (质量分数w = mATP: (mATP + mg-C3N4)=0.33、0.40、0.50、0.67), 并研究在0.1 mol/L KOH的电解液中的电催化析氧性能。结果表明: g-C3N4薄层通过Si-O-C键牢固负载于凹凸棒石表面, 从而有效调变g-C3N4表面的电子层结构, 提供更多的催化活性位点。电催化析氧测试的结果表明: ATP/g-C3N4-0.50具有最优的析氧催化性能, 在10 mA/cm 2电流密度下其析氧过电位为410 mV, 塔菲尔斜率为118 mV/dec, 并表现出优异的析氧稳定性。
锂氧气电池由于其极高的能量密度被认为是一种很有前途的储能系统。二氧化锰基材料被认为是锂空气电池阴极的低成本且高效的催化剂。在本研究中, 通过水热法合成了不同长度的α-MnO2纳米线并对其在锂氧气电池中的电化学性能进行了研究。X射线衍射和场发射扫描电镜证实了α-MnO2的形成。由α-MnO2纳米线组装的锂氧气电池在电流密度为100 mA/g、放电截止电压为2 V时, 以正极总质量为计算标准, 放电容量高达12000 mAh/g。当限定放电容量为500 mAh/g时, 电池能够有效循环超过40次, 显现出良好的循环稳定性。这些结果表明, α-MnO2纳米线可以作为锂氧气电池的催化剂。
硫化钴纳米材料是一种重点研究的染料敏化太阳能电池对电极材料。本工作以氟掺杂二氧化锡导电玻璃为基片, 采用反向恒压电沉积法制备透明硫化钴薄膜。实验结果表明: 电镀溶液的pH是硫化钴薄膜表面形貌形成的关键性因素, 而电沉积圈数可以有效控制硫化钴薄膜的厚度。电化学测试结果表明: 硫化钴薄膜对电极展现出了良好的电催化活性, 尤其是在电镀溶液pH为7.2、电沉积圈数为12圈的最佳条件下制备的硫化钴对电极具有大量的纳米薄片状结构, 有利于增加电催化活性位点, 使得其展现出了比铂电极更加优异的电催化性能。由此电极组装的染料敏化太阳能电池的能量转换效率达到7.26%, 10个电池器件的平均效率为7.18%, 高于相应铂电极器件的电池效率(6.94%)。
氧化铈的电子导电性较低、氧空位数量少, 难以单独用作为电催化剂。但是掺杂过渡金属或非金属元素可以提高氧化铈的CO催化能力, 同时在氧化物中掺杂钴可有效提高材料的电催化能力, 因此本工作开展了对钴掺杂的氧化铈电催化性能的研究。采用均相沉淀法制备了钴掺杂的氧化铈纳米粒子, 电化学测试发现当钴掺杂比例为20mol%时, 氧化铈纳米粒子对氧气还原反应(ORR)和氧气析出反应(OER)的综合催化能力最强。经过10 h的长时间催化作用, ORR、OER过程中的电流密度分别下降了20%、5%左右, 远优于贵金属和未掺杂氧化铈纳米粒子催化剂, 显示出良好的催化稳定性。拉曼光谱、阻抗图及XPS谱图等的测试分析表明钴掺杂后材料的电荷转移阻抗降低(电子导电性的提高)、氧活性物种和氧空位增加是氧化铈催化性能提高的主要原因。本工作通过钴掺杂大幅度提高了氧化铈的电催化性能, 同时为其它离子导体作为双功能电催化剂的使用提供了借鉴。
采用水热合成法, 以碳球为模板, 改变焙烧升温速率, 控制影响铈物种的扩散、渗透及碳球结构的收缩率, 制备了单、双壳层CeO2空心球。通过微波辅助乙二醇还原氯铂酸法制备了Pt-CeO2/RGO催化剂, 研究了CeO2空心球的添加对Pt基催化剂电催化性能的影响。利用X射线衍射仪(XRD)、比表面积及孔径分析仪(BET)、扫描电镜(SEM)和电子能谱(EDAX)、透射电镜(TEM)、X射线光电子能谱(XPS)对CeO2及催化剂的微观结构进行了表征, 利用电化学工作站对催化剂进行电化学性能测试。结果表明: 单、双壳层CeO2空心球的比表面积为124.44 m2/g、140.95 m2/g, 孔容为0.014427 cm3/(g·nm)、0.018605 cm3/(g·nm), 孔径分布在2~4 nm范围内。催化剂中的CeO2保持原有的球状形貌, Pt纳米粒子主要分布在CeO2附近; 当RGO∶CeO2=1∶2时, 添加了双壳层CeO2空心球的Pt-CeO2/RGO催化剂的电催化性能最优, 电化学活性表面积为94.27 m2/g, 对乙醇氧化的峰电流密度值为613.54 A/g, 1000 s的稳态电流密度值为135.45 A/g。
采用KOH溶液在通电条件下对Fe3N纳米颗粒表面改性的方法, 探究了碱化处理对Fe3N纳米颗粒电催化性能的影响。采用XRD、TEM、EDX、XPS、拉曼光谱和傅立叶变换红外光谱对碱化前后的Fe3N样品进行形貌和成分的表征, 采用时间电流曲线、LSV曲线、Tafel斜率、交流阻抗法和CV曲线对碱化前后的Fe3N样品进行电催化制氢(HER)性能的分析。结果表明, 用KOH处理的Fe3N样品, 平均晶粒尺寸由(80±10) nm缩小为(70±10) nm, 形状由破碎的链状结构变为椭圆形结构, 物相由ε-Fe3N相部分转变为α-Fe2O3相; 尺寸、形貌和成分的改变, 使得碱化后的样品有更多的电催化活性位点暴露。由电流密度为10 mA/cm2的过电位0.429 V降为0.204 V, Tafel斜率由103 mV/dec降为95 mV/dec。过电势降低, 交流阻抗变小, 电化学活性面积增大, 表明KOH碱化处理后的样品电催化制氢的能力得到大大提高。
采用热阴极直流辉光等离子体化学气相沉积法制备亚微米晶氮掺杂金刚石膜(NDD), 采用SEM分析样品的表面形貌, 分别用Hall测试和循环伏安法测试氮掺杂金刚石电极的电学和电化学性能。实验结果表明, 当氮气流量低于30 sccm时, 膜的电导率随氮气流量的增大略有提高; 氮气流量继续增大则电导率迅速下降, 电导率最大为5.091 S/cm。氮掺杂金刚石电极具有较好的伏安性能, 在酸性、中性和碱性介质中均具有较宽的电位窗口和较低的背景电流。以硝基苯为目标污染物测试NDD材料作为阳极氧化降解的电催化性能。在0.1 mol/L Na2SO4溶液的支持电解质中, 以氮掺杂金刚石为阳极降解0.5 mmol/L的硝基苯, 反应时间300 min, 硝基苯的降解率达到94%, 化学需氧量(COD)去除率约68%。
为提高Ti3C2的层间距及电催化性能, 利用碳纳米管(CNT)进行层间微结构调控。Ti3AlC2经HF化学刻蚀法获得层状Ti3C2, 再以羟基化碳纳米管(CNT)以及次氯钯酸钾(K2PdCl4)为原料, 通过超声分散和溶剂热法将贵金属Pd粒子负载到Ti3C2-CNT上, 制得直接甲醇电池阳极催化剂材料Pd/Ti3C2-CNT。采用X射线衍射、扫描电镜以及光电子衍射对样品的形貌和结构进行表征, 考察了CNT对Ti3C2层间微结构的调整效果; 采用循环伏安法、计时电流法以及交流阻抗图谱研究了Pd/Ti3C2-CNT复合催化剂在酸性、碱性溶液中对甲酸、甲醇的电催化性能。结果表明, 复合材料中CNT对Ti3C2有插层作用, 建立了“桥联”效果, 有利于催化剂载体电子传输, 进而提高了Pd/Ti3C2-CNT的电催化性能。
采用模板复型辅助的化学气相沉积法(CVD)成功制备出一种非贵金属的氧还原反应(ORR)催化剂材料—包裹碳化钨纳米粒子的石墨化介孔碳(WC/MG)复合物。制备的介孔结构WC/MG复合材料不仅具有高氧还原反应电化学催化活性, 还表现出良好的电化学稳定性。在O2饱和的0.1 mol/L KOH电解质溶液中, 900℃制备的样品WC/ MG-900其半波电势(E1/2)和极限电流密度仅比商用贵金属催化剂Pt/C分别低50 mV 和 0.2 mA/cm2。Koutecky- Levich曲线和旋转环盘电极实验均表明, 该介孔结构的WC/MG复合材料表现出近似4电子的ORR反应途径, 具有可与Pt/C催化剂相比拟的ORR催化活性, 以及比Pt/C更优越的电化学稳定性和耐甲醇性能, 使得该介孔结构WC/MG复合物在氧还原电极材料中表现出良好的应用前景。