研究论文

CVI制备Si3N4p/Si3N4透波材料表征与性能

  • 刘谊 ,
  • 刘永胜 ,
  • 张立同 ,
  • 成来飞 ,
  • 徐永东
展开
  • 西北工业大学超高温结构复合材料国防科技重点实验室, 西安 710072

收稿日期: 2005-08-22

  修回日期: 2005-10-31

  网络出版日期: 2006-07-20

Characterization and Properties of Si3N4p/Si3N4 Radome Material Prepared by Chemical Vapor Infiltration

  • LIU Yi ,
  • LIU Yong-Sheng ,
  • ZHANG Li-Tong ,
  • CHENG Lai-Fei ,
  • XU Yong-Dong
Expand
  • National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2005-08-22

  Revised date: 2005-10-31

  Online published: 2006-07-20

摘要

以SiCl4-NH3-H2为反应体系, 采用化学气相渗透(CVI)法制备Si3N4p/Si3N4透波材料. XRF测试表明试样主要含Si、N、O三种元素. XRD测试表明复合材料主要成分为α-Si3N4和非晶沉积物和非晶SiO2, 并有微量的β-Si3N4和晶体Si, 高温热处理可使非晶沉积物转变为α-Si3N4和β-Si3N4. SEM照片显示颗粒团间结合不够致密, 残留气孔偏大. 试样的弯曲强度最高为94MPa, 介电常数为4.1~4.8.

本文引用格式

刘谊 , 刘永胜 , 张立同 , 成来飞 , 徐永东 . CVI制备Si3N4p/Si3N4透波材料表征与性能[J]. 无机材料学报, 2006 , 21(4) : 979 -985 . DOI: 10.3724/SP.J.1077.2006.00979

Abstract

normalsize Abstract: Si3N4p/Si3N4 radome material was prepared by chemical vapor infiltration (CVI) with SiCl4-NH3-H2 systems. XRF analysis shows the specimen mainly contains Si, N, O three kinds of elements. XRD patterns indicate the sample consists of α-Si3N4, amorphous deposit, noncrystalline SiO2, small amount of β-Si3N4 and Si. Amorphous deposit can be converted into α-Si3N4 and β-Si3N4 by high temperature heat treatment. SEM photographs show weak bonding and large pores exist among granulae. Maximum flexural strength of the samples is 94MPa, and dielectric constants are between 4.1 and 4.8.

参考文献

1 Barta J, Manela M, Fische R. Materials Science and Engineering, 1985, 71: 265-272.
2 Chen Dianying, Zhang Baolin, Zhuang Hanrui, et al. Ceramics International, 2003, 29: 363-364.
3 Yang Jianfeng, Deng Zhenyan, Ohji Tatsuki. Journal of the European Ceramic Society, 2003, 23: 371-378.
4 Walton J D, JR. American Ceramic Society Bulletin, 1974, 53 (2): 255-258.
5 Fitzer Erich, Hegen Dieter. Angewandte Chemie International, 2003, 18 (4): 295-304.
6 Richard D. Veltri, Francis S. Galasso. Journal of American Ceramic Society, 1990, 73 (7): 2137-2140.
7 Hoyt Joel T, Yang J M. SAMPE Journal, 1991, 21 (2): 11-17.
8 刘永胜, 成来飞, 张立同, 等(LIU Yong-Sheng, et al). 无机材料学报(Journal of Inorginc Materials), 2005, 20 (5): 1208-1214.
9 Doi H, Kikuchi N, Oosawa Y. Materials Science and Engineering, 1988, 105-106 (2): 465-480.
10 Niihara Koichi, Hirai Toshio. Journal of Materials Science, 1976, 11 (4): 604-611.
11 王涛, 张立德. 科学通报, 1994, 39 (11): 983-985.
12 郭文利, 徐廷献, 李爱华(Guo wenli, et al). 硅酸盐学报 (Journal of the Chinese Ceramic Society), 2003, 31 (7): 698-701.
13 Gilde Gary, Patel Parimal, Clifford Hubbard, et al. SION low dielectric constant ceramic nanocomposite. United States Patent, 501/96.5, 5677252. Oct.14,1997.
14 Dodds Gerald C, Tanzilli, Richard A. Silica, boron nitride, aluminum nitride, alumina composite, article and method of making same. United States Patent, 501/96.1, 5891815. Apr.6,1999.
15 Talmy Inna G, Martin Curtis A, Haught Deborah A, et al. Electromagnetic window. United States Patent, 501/95.3, 5573986. Nov.12,1996.
文章导航

/