为了改善La-Mg-Ni基贮氢合金的循环稳定性和综合电化学性能, 研究了电镀镍-钴合金对La0.88Mg0.12Ni2.95Mn0.10Co0.55Al0.10贮氢合金粉末表面形貌和电极电化学性能的影响. FESEM表明, 电镀处理后合金粉末表面沉积了球状的镍-钴合金颗粒. 电化学性能测试表明, 贮氢合金电极的放电容量、高倍率放电性能和循环稳定性均得到了显著改善. 200周循环时合金电极的容量保持率从未处理合金电极的60%提高到镀覆镍-钴合金的80%, 在放电电流密度1080mA/g下的高倍率放电性能提高了23%. 线性极化曲线和电化学阻抗分析结果显示, 包覆镍-钴合金后贮氢合金电极表面的电荷转移速率加快, 电催化活性提高.
丁慧玲1
,
2
,
蒿建生1
,
3
,
朱惜林2
,
3
,
李 媛2
,
韩树民1
,
2
,
张静武1
. 电镀镍-钴合金对La-Mg-Ni基贮氢合金电化学性能的影响[J]. 无机材料学报, 2010
, 25(6)
: 647
-652
.
DOI: 10.3724/SP.J.1077.2010.00647
In order to improve cycling stability and overall electrochemical properties of La-Mg-Ni-based hydrogen storage alloys, an electroplating treatment was applied on La0.88Mg0.12Ni2.95Mn0.10Co0.55Al0.10 alloy powders. The effect of cobalt-nickel coating on the morphological and electrochemical properties was studied. FESEM results show that spherical nickel-cobalt alloy particles are deposited on the surface of the alloys. Electrochemical tests indicate that the maximum discharge capacity, the cycling stability and the high rate dischargeability (HRD) are remarkably improved. After 200 charge/discharge cycles, the capacity retention rate increases from 60% (uncoated) to 80% (nickel-cobalt coated). The HRD at 1080mA/g rises by 23% for the nickel-cobalt coated alloy electrodes. Linear polarization and Electrochemical Impedance Spectroscope (EIS) results reveal that the surface of alloy electrodes with cobalt-nickel coatings is more catalytic for the electrochemical charge transfer reactions.
[1]Ruiz F C, Castro E B, Real S G, et al. Electrochemical characterization of AB2 alloys used for negative electrodes in Ni/MH batteries. Int. J. Hydrogen Energy, 2008, 33(13): 3576-3580.
[2]Chen J, Takeshita H T, Tanaka H, et al. Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure. J. Alloys Compd., 2000, 302(1/2): 304-313.
[3]Gu H, Zhu Y F, Li L Q. Effect of La/Ni ratio on hydrogen storage properties of Mg–Ni–La system prepared by hydriding combustion synthesis followed by mechanical milling. Int. J. Hydrogen Energy, 2008, 33(12): 2970-2974.
[4]Liu Y F, Pan H G, Gao M X, et al. Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x = 0.00–0.85) metal hydride electrode alloys for Ni/MH batteries Part II: Electrochemical performances. J. Alloys Compd., 2005, 388(1/2): 109-117.
[5]Zhao X Y, Ma L Q, Gao Y J, et al. Effect of surface treatments on microstructure and electrochemical properties of La–Ni–Al hydrogen storage alloy. Int. J. Hydrogen Energy, 2009, 34(4): 1904-1909.
[6]Ise T, Murata T, Hirota Y, et al. The surface structure and the electrochemical properties of hydrogen-absorbing alloys treated with an HCl aqueous solution. J. Alloys Compd., 2000, 307(1/2): 324-332.
[7]Xiao L L, Wang Y J, Liu Y, et al. Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3-Ni2.4Co0.6 hydrogen-storage alloy. Int. J. Hydrogen Energy, 2008, 33(14): 3925-3929.
[8]Qiu S J, Chu H L, Zhang Y, et al. The electrochemical performances of Ti–V-based hydrogen storage composite electrodes prepared by ball milling method. Int. J. Hydrogen Energy, 2008, 33(24): 7471-7478.
[9]Wei X, Zhang P, Dong H, et al. Electrochemical performances of a Co-free La(NiMnAlFe)5 hydrogen storage alloy modified by surface coating with Cu. J. Alloys Compd., 2008, 458(1/2): 583-587.
[10]Raju M, Ananth M V, Vijayaraghavan L. Influence of electroless coatings of Cu, Ni–P and Co–P on MmNi3.25Al0.35Mn0.25Co0.66 alloy used as anodes in Ni–MH batteries. J. Alloys Compd., 2009, 475(1/2): 664-671.
[11]Ambrosio R C, Ticianelli E A. Studies on the influence of palladium coatings on the electrochemical and structural properties of a metal hydride alloy. Surf. Coat Technol., 2005, 197(2/3): 215-222.
[12]刘素琴, 陈东洋, 黄可龙, 等(LIU Su-Qin, et al). MgNi-TiNi0.56M0.44 (M=Al、Fe)贮氢合金的制备和电化学性能研究. 无机材料学报(Journal of Inorganic Materials), 2009, 24(2): 361-366.
[13]Durairajan A, Haran B S, Popov B N, et al. Cycle life and utilization studies on cobalt microencapsulated AB5 type metal hydride. J. Power Sources, 1999, 83(1/2): 114-120.
[14]Wu M S, Wu H R, Wang Y Y, et al. Electrochemical investigation of hydrogen-storage alloy electrode with duplex surface modification. Int. J. Hydrogen Energy, 2004, 29(12): 1263-1269.
[15]Ding H L, Han S M, Liu Y, et al. Electrochemical performance studies on cobalt and nickel electroplated La–Mg–Ni-based hydrogen storage alloys. Int. J. Hydrogen Energy, 2009, 34(23): 9402-9408.
[16]Gomez E, Pan S, Valles E. Electrodeposition of Co–Ni and Co–Ni–Cu systems in sulphate–citrate medium. Electrochim. Acta, 2005, 51(1): 146-153.
[17]Chi B, Li J, Yang X, et al. Deposition of Ni–Co by cyclic voltammetry method and its electrocatalytic properties for oxygen evolution reaction. Int. J. Hydrogen Energy, 2005, 30(1): 29-34.
[18]Miao H J, Piron D L. Composite-coating electrodes for hydrogen evolution reaction. Electrochim. Acta, 1993, 38(8): 1079-1085.
[19]Ma S, Gao M X., Li R, et al. A study on the structural and electrochemical properties of La0.7-xNdxMg0.3Ni2.45Co0.75Mn0.1Al0.2 (x = 0.0–3.0) hydrogen storage alloys. J. Alloys Compd., 2008, 457(1/2): 457-467.
[20]Liu Y F, Pan H G, Yue Y J, et al. Cycling durability and degradation behavior of La–Mg–Ni–Co-type metal hydride electrodes. J. Alloys Compd., 2005, 395(1/2): 291-299.
[21]Li Y, Han D, Han S M, et al. Effect of rare earth elements on electrochemical properties of La–Mg–Ni-based hydrogen storage alloys. Int. J. Hydrogen Energy, 2009, 34(3): 1399-1404.
[22]Iwakura C, Oura T, Inoue H, et al. Effects of substitution with foreign metals on the crystallographic, thermodynamic and electrochemical properties of AB5-type hydrogen storage alloys. Electrochim. Acta, 1996, 41(1): 117-121.
[23]Notten P H L, Hokkeling P. Double-phase hydride forming compounds: a new class of highly electrocatalytic materials. J. Electro- chem. Soc., 1991, 138(7): 1877-1885.
[24]Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Compd., 1993, 202(1/2): 183-197.