| [1] |
VAN DER ENDE B M, LI L, GODIN D, et al. Stand-off nuclear reactor monitoring with neutron detectors for safeguards and non- proliferation applications. Nature Communications, 2019, 10: 1959.
DOI
|
| [2] |
SOLTES J, VIERERBL L, LAHODOVA Z, et al. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor. IEEE Transactions on Nuclear Science, 2016, 63(3): 1640.
DOI
URL
|
| [3] |
CIEŚLAK M, GAMAGE K, GLOVER R. Critical review of scintillating crystals for neutron detection. Crystals, 2019, 9(9): 480.
DOI
URL
|
| [4] |
PIETROPAOLO A, ANGELONE M, BEDOGNI R, et al. Neutron detection techniques from μeV to GeV. Physics Reports, 2020, 875: 1.
DOI
URL
|
| [5] |
KOUZES R T. The 3He supply problem. Pacific Northwest National Lab, 2009, 18388: 1.
|
| [6] |
KAMADA K, CHIBA H, YOSHINO M, et al. Growth and scintillation properties of Eu doped LiSrI3/LiI eutectics. Optical Materials, 2017, 68: 70.
DOI
URL
|
| [7] |
HOU Y Y, GUI Q, ZHANG C S, et al. Scintillation properties of Cs2LiYCl6:Ce crystal for neutron and gamma dual detection. Journal of Synthetic Crystals, 2021, 50(10): 1933.
|
| [8] |
ZHANG X, KANG Z, CAI Z, et al. Study on the segregation behavior of Ce in CLYC crystals. Journal of Crystal Growth, 2021, 573: 126308.
|
| [9] |
HE J Y, LI W, WEI Q H, et al. Growth and properties of 1-inch Cs2LiLaBr6:Ce scintillation crystal. Journal of Synthetic Crystals, 2021, 50(10): 1879.
|
| [10] |
WOOLF R S, PHLIPS B F, WULF E A. Characterization of the internal background for thermal and fast neutron detection with CLLB. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838: 147.
|
| [11] |
WU C, TANG B, SUN Z J, et al. A study of ZnS(Ag)/6LiF with different mass ratios. Radiation Measurements, 2013, 58: 128.
DOI
URL
|
| [12] |
STAVE S, BLISS M, KOUZES R, et al. LiF/ZnS neutron multiplicity counter. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 208.
DOI
URL
|
| [13] |
BEDOGNI R, LEGA A, MENZIO L, et al. A numerical model to predict pulse height distribution of alpha particles in thin ZnS(Ag) scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 990: 164991.
DOI
URL
|
| [14] |
WATANABE K, MITSUBOSHI N, ISHIKAWA A, et al. Basic study on a LiF-Eu:CaF2 mixed powder neutron scintillator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161244.
DOI
URL
|
| [15] |
KAWAGUCHI N, KIMURA H, TAKEBUCHI Y, et al. Dosimetric properties of non-doped LiF/CaF2 eutectic. Radiation Measurements, 2020, 132: 106254.
DOI
URL
|
| [16] |
KAWAGUCHI N, FUKUDA K, YANAGIDA T, et al. Fabrication and characterization of large size 6LiF/CaF2:Eu eutectic composites with the ordered lamellar structure. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652: 209.
DOI
URL
|
| [17] |
KAWANO N, KAWAGUCHI N, FUKUDA K, et al. Scintillation and dosimeter properties of 6LiF/CaF2:Eu eutectic composites. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 8964.
DOI
|
| [18] |
LI X, DENG M, SHI Y, et al. Bulk polystyrene-BaF2 composite scintillators for highly efficient radiation detection. Crystals, 2023, 13(9): 13.
DOI
URL
|
| [19] |
LI P, CHENG W, ZHOU Y, et al. Large scale BN‐perovskite nanocomposite aerogel scintillator for thermal neutron detection. Advanced Materials, 2023, 35(25): 2209452.
DOI
URL
|
| [20] |
TAUDUL B, TIELENS F, CALATAYUD M. Raman characterization of plastics: a DFT study of polystyrene. The Journal of Physical Chemistry B, 2024, 128(17): 4243.
|
| [21] |
TROJAN-PIEGZA J, GLODO J, SARIN V K. CaF2(Eu2+):LiF-structural and spectroscopic properties of a new system for neutron detection. Radiation Measurements, 2010, 45(2): 163.
DOI
URL
|