| [1] | SANGWAN V K, HERSAM M C. Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15: 517. | 
																													
																						| [2] | MURAT O, NICOLAS E, WANG B M, et al. Nanosecond protonic programmable resistors for analog deep learning. Science, 2022,  377(6605):539. DOI    
																																																	PMID
 | 
																													
																						| [3] | HO V M, LEE J, MARTIN K C. The cell biology of synaptic plasticity. Science, 2011,  334(6056):623. DOI    
																																																	PMID
 | 
																													
																						| [4] | ZHU Y X, WAN Q, SHAN F K, et al. Solution-processed electrolyte gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications. ACS Applied Materials & Interfaces, 2020,  12(1):1061. | 
																													
																						| [5] | ZHU Y X, LIU G X, SHAN F K, et al. Electrospun ZnSnO nanofibers for neuromorphic transistors with ultralow energy consumption. IEEE Electron Device Letters, 2019,  40(11):1776. DOI    
																																					URL
 | 
																													
																						| [6] | JIN C X, SUN J, YANG J L, et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Letters, 2022, 22: 3372. | 
																													
																						| [7] | KWON S M, KIM Y H, PARK S K, et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Advanced Materials, 2019,  31(52):1906433. DOI    
																																					URL
 | 
																													
																						| [8] | WANG J X, CHEN Y, SUN J, et al. Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors. Applied Physics Letters, 2018,  113(15):151101. DOI    
																																					URL
 | 
																													
																						| [9] | JIN C X, LIU W R, SUN J, et al. Printable ion-gel-gated In2O3 synaptic transistor array for neuro-inspired memory. Applied Physics Letters, 2022,  120(23):233701. DOI    
																																					URL
 | 
																													
																						| [10] | YANG J T, GE C, JIN K J, et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Advanced Materials, 2018,  30(34):1801548. DOI    
																																					URL
 | 
																													
																						| [11] | QIU H Y, HAO D D, SHAN F K, et al. Transparent and biocompatible In2O3artificial synapses with lactose-citric acid electrolyte for neuromorphic computing. Applied Physics Letters, 2022,  121(18):183301. DOI    
																																					URL
 | 
																													
																						| [12] | YU S M. Neuro-inspired computing with emerging nonvolatile memory. Proceedings of the IEEE, 2018,  106(2):260. DOI    
																																					URL
 | 
																													
																						| [13] | NIKAM R D, KWAK M, LEE J, et al. Controlled ionic tunneling in lithium nanoionic synaptic transistor through atomically thin graphene layer for neuromorphic computing. Advanced Electronic Materials, 2019,  6(2):1901100. DOI    
																																					URL
 | 
																													
																						| [14] | SUN J, OH S, PARK J H, et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Advanced Functional Materials, 2018,  28(47):1804397. DOI    
																																					URL
 | 
																													
																						| [15] | LEE H, JIN M, NA H J, et al. Implementation of synaptic device using ultraviolet ozone. Advanced Functional Materials, 2021,  32(15):2110591. DOI    
																																					URL
 | 
																													
																						| [16] | YANG C S, SHANG D S, LIU N, et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Advanced Functional Materials, 2018,  28(42):1804170. DOI    
																																					URL
 | 
																													
																						| [17] | WANG J J, DING Y N, SHAN F K, et al. Performance enhancement of field-effect transistors based on In2O3 nanofiber networks by plasma treatment. IEEE Electron Device Letters, 2021,  42(2):176. DOI    
																																					URL
 | 
																													
																						| [18] | FENG G D, JIANG J, WAN Q, et al. A sub-10nm vertical organic/ inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Advanced Materials, 2019,  32(6):1906171. DOI    
																																					URL
 | 
																													
																						| [19] | GILLUND G, SHIFFRIN R M. A retrieval model for both recognition and recall. Psychological Review, 1984,  91(1):1. PMID
 | 
																													
																						| [20] | LI H, DING Y N, SHAN F K, et al. Flexible and compatible synaptic transistor based on electrospun In2O3 nanofibers. IEEE Transactions on Electron Devices, 2022,  69(9):5363. DOI    
																																					URL
 | 
																													
																						| [21] | NIE S, HE Y L, WAN Q, et al. Low-voltage oxide-based synaptic transistors for spiking humidity detection. IEEE Electron Device Letters, 2019,  40(3):459. DOI    
																																					URL
 | 
																													
																						| [22] | ZHU Y X, PENG B C, WAN Q, et al. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Applied Physics Letters, 2022,  121(13):133502. DOI    
																																					URL
 | 
																													
																						| [23] | LIU Y H, ZHU L Q, WAN Q, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Advanced Materials, 2015,  27(37):5599. DOI    
																																					URL
 | 
																													
																						| [24] | WAN C J, ZHU L Q, WAN Q, et al. Laterally coupled synaptic transistors gated by proton conducting sodium alginate films. IEEE Electron Device Letters, 2014,  35(6):672. DOI    
																																					URL
 | 
																													
																						| [25] | KE S, FU C Y, WAN Q, et al. BCM learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors. IEEE Transactions on Electron Devices, 2022,  69(8):4646. DOI    
																																					URL
 | 
																													
																						| [26] | QIN W, KANG B H, KIM H J. Flexible artificial synapses with a biocompatible maltose-ascorbic acid electrolyte gate for neuromorphic computing. ACS Applied Materials & Interfaces, 2021,  13(29):34597. | 
																													
																						| [27] | ZHU Y X, MAO H W, WAN Q, et al. Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing. IEEE Electron Device Letters, 2022,  43(4):651. DOI    
																																					URL
 | 
																													
																						| [28] | CHEN C S, HE Y L, WAN Q, et al. A photoelectric spiking neuron for visual depth perception. Advanced Materials, 2022,  34(20):2201895. DOI    
																																					URL
 | 
																													
																						| [29] | HE Y L, NIE S, WAN Q, et al. Indium-gallium-zinc-oxide Schottky synaptic transistors for silent synapse conversion emulation. IEEE Electron Device Letters, 2019,  40(1):139. DOI    
																																					URL
 | 
																													
																						| [30] | QIAN C, OH S, CHO J H, et al. Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 2019, 66: 104095. |