[1] |
STAROBOR A, MIRONOV E, PALASHOV O. High-power Faraday isolator on a uniaxial CeF3 crystal. Optics Letters, 2019, 44(6): 1297.
DOI
URL
|
[2] |
LI H F, WANG J Y, CHEN J F, et al. Bridgman growth and magneto-optical properties of CeF3 crystal as Faraday Rotator. Optical Materials, 2020, 100: 109675.
DOI
URL
|
[3] |
MOLINA P, VASYLIEV V, VILLORA E G, et al. CeF3 and PrF3 as UV-Visible Faraday rotators. Optics Express, 2011, 19(12): 11786.
DOI
URL
|
[4] |
VOJNA D, SLEZAK O, YASUHARA R, et al. Faraday rotation of Dy2O3, CeF3 and Y3Fe5O12 at the mid-infrared wavelengths. Materials, 2020, 13(23): 5324.
DOI
URL
|
[5] |
ZHAO G, ZHAO C C, YANG Y L, et al. Magneto-optical performances of novel neodymium-doped CeF3 crystal. Materials Letters, 2021, 300: 130134.
DOI
URL
|
[6] |
KARIMOV D N, LISOVENKO D S, IVANOVA A G, et al. Bridgman growth and physical properties anisotropy of CeF3 single crystals. Crystals, 2021, 11(7): 793.
DOI
URL
|
[7] |
YOSHIKAWA A, SATONAGA T, KAMADA K, et al. Crystal growth of Ce: PrF3 by micro-pulling-down method. Journal of Crystal Growth, 2004, 270(3/4): 427.
DOI
URL
|
[8] |
INAGAKI T, YOSHIMURA Y, KANDA Y, et al. Development of CeF3 crystal for high-energy electromagnetic calorimetry. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 2000, 443(1): 126.
|
[9] |
KUPPURAO S, DERBY J J. Designing thermal environments to promote convex interface shapes during the vertical Bridgman growth of cadmium zinc telluride. Journal of Crystal Growth, 1997, 172(3/4): 350.
DOI
URL
|
[10] |
HAHN S H, YOON J K. Numerical analysis for the application of radiative reflectors to vertical Bridgman growth configurations. Journal of Crystal Growth, 1997, 177: 296.
DOI
URL
|
[11] |
EPURE S, DUFFAR T, BRAESCU L. Comparison between analytical and numeric determination of the interface curvature during dewetted Bridgman crystal growth. Journal of Crystal Growth, 2008, 310(7/8/9): 1559.
DOI
URL
|
[12] |
ZAPPETTINI A, ZhA M, MARCHINI L, et al. Control of the interface shape in vertical Bridgman grown CdZnTe crystals for X- ray detector applications. CrystEngComm, 2012, 14(18): 5992.
DOI
URL
|
[13] |
YANG X, LV G, MA W, et al. The effect of radiative heat transfer characteristics on vacuum directional solidification process of multicrystalline silicon in the vertical Bridgman system. Applied Thermal Engineering, 2016, 93: 731.
DOI
URL
|
[14] |
ZHAO W, LIU L. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket. Journal of Crystal Growth, 2017, 458: 31.
DOI
URL
|
[15] |
ZHANG C, GAO B, TREMSIN A S, et al. Analysis of chemical stress and the propensity for cracking during the vertical Bridgman growth of BaBrCl:Eu. Journal of Crystal Growth, 2020, 546: 125794.
DOI
URL
|
[16] |
FEDYUSHKIN A I, BURAGO N G, PUNTUS A A. Convective heat and mass transfer modeling under crystal growth by vertical Bridgman method. Journal of Physics: Conference Series, 2020, 1479(1): 012029.
|
[17] |
KUPPURAO S, BRANDON S, DERBY J J. Modeling the vertical Bridgman growth of cadmium zinc telluride I. Quasi-steady analysis of heat transfer and convection. Journal of Crystal Growth, 1995, 155(1/2): 93.
DOI
URL
|
[18] |
HONG B, ZHANG S, ZHENG L, et al. Studies on thermal and interface optimization for CdZnTe crystals by unseeded traveling heater method. Journal of Crystal Growth, 2020, 546: 125776.
DOI
URL
|
[19] |
VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709.
DOI
URL
|
[20] |
SPEDDING F H, BEAUDRY B J, HENDERSON D C, et al. High-temperature enthalpies and related thermodynamic functions of trifluorides of Sc, Ce, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb. Journal of Chemical Physics, 1974, 60(4): 1578.
DOI
URL
|
[21] |
HU K, ZHENG L, ZHANG H. Control of interface shape during high melting sesquioxide crystal growth by HEM technique. Journal of Crystal Growth, 2018, 483: 175.
DOI
URL
|
[22] |
HAO P, ZHU J, LIAO J, et al. Quality control and process optimization of ingot crystalline silicon based on neural network and genetic algorithm. Journal of Synthetic Crystals, 2022, 51(3): 385.
|