[1] |
CHEN YAN, BAO YEFENG, LI XIAOYA , et al. Space growth of bismuth telluride based thermoelectric semiconductive crystals. Chinese Journal of Space Science, 2016,36(4):413-419.
|
[2] |
FENG SHAOBO, LUO XINGHONG . Dendrite growth of SRR99 nickel-base single crystal superalloy under microgravity condition formed by long drop tube. Chinese Journal of Rare Metals, 2012,36(3):341-346.
|
[3] |
ZOU XIA, LI GUORONG, TAN YUANQIANG , et al. Discrete element method modeling of the influence of gravity during functional ceramics material compaction process. Journal of Inorganic Materials, 2010,25(10):1071-1075.
|
[4] |
ZHOU YANFEI, TANG LIANAN, AI FEI , et al. Crystal growth of bismuth silicon oxide(BSO) in space. Journal of Inorganic Materials, 2003, 18(1):211-214.
|
[5] |
PEREZ-GRANDE I, RIVAS D, DE PABLO V . A global thermal analysis of multizone resistance furnaces with specular and diffuse samples. Journal of Crystal Growth, 2002,246(1):37-54.
|
[6] |
WANG G H, ZHANG F, SUN X K , et al. Optimized design of multilayer thermal insulations for hypersonic vehicles. Key Engineering Materials, 2016,697:449-452.
|
[7] |
JI T, ZHANG R, SUNDEN B , et al. Investigation on thermal performance of high temperature multilayer insulations for hypersonic vehicles under aerodynamic heating condition. Applied Thermal Engineering, 2014,70(1):957-965.
|
[8] |
KAMRAN DARYABEIGI . Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972, 1999: 1-30.
|
[9] |
MACHADO, ARAUJO H . Modeling heat transfer with micro- scale natural convection in fibrous insulation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014,36(4):847-857.
|
[10] |
KWON J S, JANG C H, JUNG H , et al. Effective thermal conductivity of various filling materials for vacuum insulation panels. International Journal of Heat and Mass Transfer, 2009,52(23/24):5525-5532.
|
[11] |
HUANG C, ZHANG Y . Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method. Chinese Journal of Aeronautics, 2014,27(4):791-796.
|
[12] |
GRINCHUK P S . Contact heat conductivity under conditions of high-temperature heat transfer in fibrous heat-insulating materials. Journal of Engineering Physics and Thermophysics, 2014,87(2):481-488.
|
[13] |
XI TONG-GENG . Thermophysical of Inorganic Materials. Shanghai: Shanghai Scientific & Technical Publishs. 1981: 123-156.
|
[14] |
Thermal insulation-determination of steady-state thermal resistance and related properties-heat flow meter apparatus. GB/T 10295- 2008.
|
[15] |
XIN CHUNSUO, HE XIAOWA . Research of improving surface temperature uniformity of low thermal conductance materials. Journal of Astronautic Metrology and Measurement, 2013,33(06):31-35.
|
[16] |
CUNNINGTON G R, MILLER S D, DARYABEIGI K . Heat transfer in high-temperature multilayer insulation. Thermal Protection Systems & Hot Structures, 2006,631(631):43.
|
[17] |
SPINNLERM, WINTER E R F, VISKANTA R . Studies on high- temperature multilayer thermal insulations. International Journal of Heat and Mass Transfer, 2004,47(6):1305-1312.
|
[18] |
HUAI XIULAN, WANG WEIWEI, LI ZHIGANG . Analysis of the effective thermal conductivity of fractal porous media. Applied Thermal Engineering, 2007,27(17/18):2815-2821.
|
[19] |
KAN ANKANG, ZHANG TINGTING, LOU HAIJUN . Fractal study of effective thermal conductivity of fiber glass materials. Chinese Journal of Vacuum Science And Technology, 2013,33(7):654-660.
|