无机材料学报 ›› 2018, Vol. 33 ›› Issue (11): 1186-1192.DOI: 10.15541/jim20180074
丁珊珊, 陈鑫鑫, 李雨臻, 韩文锋, 吕德义, 李瑛, 唐浩东
收稿日期:
2018-02-09
修回日期:
2018-04-10
出版日期:
2018-11-16
网络出版日期:
2018-10-20
作者简介:
丁珊珊(1990-), 女, 硕士研究生. E-mail: 15958111303@163.com
DING Shan-Shan, CHEN Xin-Xin, LI Yu-Zhen, HAN Wen-Feng, LV De-Yi, LI Ying, TANG Hao-Dong
Received:
2018-02-09
Revised:
2018-04-10
Published:
2018-11-16
Online:
2018-10-20
About author:
DING Shan-Shan. E-mail: 15958111303@163.com
摘要:
镁基固体酸催化剂在含氟化学品的合成中具有优异的性能。利用模板法制备了高表面积的氟化镁,并考察了SiO2模板剂的用量对其结构及催化性能的影响。通过N2物理吸附、X射线衍射、NH3-程序升温脱附、透射电镜和X射线光电子能谱等表征手段进行了表征, 以1,1-二氟乙烷(HFC-152a, CH3CHF2)脱HF制备氯乙烯(VF,CH2=CHF)为探针对其催化性能进行了研究。结果表明, SiO2模板剂用量对氟化镁的比表面积、晶粒度和酸性有较大影响。当SiO2模板剂用量为14mol%时, 氟化镁比表面积可达304 m2/g, 是不添加SiO2模板剂的2.5倍, 而且Mg晶粒度更小, 配位数更多。随着Mg配位数增多, MgF2的酸性位急剧增多, 在以Lewis酸为活性位的1,1-二氟乙烷脱HF反应中, MgF2的催化活性迅速升高。因此, 以SiO2为模板是制备高活性MgF2催化剂的有效方法。
中图分类号:
丁珊珊, 陈鑫鑫, 李雨臻, 韩文锋, 吕德义, 李瑛, 唐浩东. 模板法制备高比表面积的氟化镁及其在HFC-152a脱HF反应中的应用[J]. 无机材料学报, 2018, 33(11): 1186-1192.
DING Shan-Shan, CHEN Xin-Xin, LI Yu-Zhen, HAN Wen-Feng, LV De-Yi, LI Ying, TANG Hao-Dong. High-surface-area Magnesium Fluoride: Preparation by Template Method and Catalytic Activity for the Dehydrofluorination of HFC-152a[J]. Journal of Inorganic Materials, 2018, 33(11): 1186-1192.
Samples | Surface area /(m2•g-1) | Pore volume /(cm3•g-1) | Pore size/nm | Crystal size/nm |
---|---|---|---|---|
SP-15 | 111 | 0.31 | 34 | - |
MgF2 | 120 | 0.16 | 10.0 | 7.6 |
9%SP-MgF2 | 261 | 0.17 | 3.4 | 6.4 |
14%SP-MgF2 | 304 | 0.22 | 3.6 | 5.8 |
20%SP-MgF2 | 295 | 0.22 | 3.6 | 6.2 |
50%SP-MgF2 | 296 | 0.23 | 3.0 | 7.6 |
表1 x%SP-MgF2的晶体结构及孔结构
Table 1 Crystal structures and pore structures of x%SP-MgF2
Samples | Surface area /(m2•g-1) | Pore volume /(cm3•g-1) | Pore size/nm | Crystal size/nm |
---|---|---|---|---|
SP-15 | 111 | 0.31 | 34 | - |
MgF2 | 120 | 0.16 | 10.0 | 7.6 |
9%SP-MgF2 | 261 | 0.17 | 3.4 | 6.4 |
14%SP-MgF2 | 304 | 0.22 | 3.6 | 5.8 |
20%SP-MgF2 | 295 | 0.22 | 3.6 | 6.2 |
50%SP-MgF2 | 296 | 0.23 | 3.0 | 7.6 |
图3 MgF2和x%SP-MgF2的TEM照片
Fig. 3 TEM images of MgF2 and x%SP-MgF2 ^Dotted spheres emphasize the formation of pores following the removal of SP-15 sphere
Samples | Total acid | Medium acid | Strong acid |
---|---|---|---|
MgF2 | 1.00 | 0 | 1.00 |
9%SP-MgF2 | 5.53 | 3.23 | 2.30 |
14%SP-MgF2 | 8.67 | 4.38 | 4.29 |
20%SP-MgF2 | 5.58 | 3.32 | 2.26 |
50%SP-MgF2 | 3.41 | 2.30 | 1.11 |
表2 x%SP-MgF2的酸强度和酸量
Table 2 Acid intensity and acid amount of x%SP-MgF2
Samples | Total acid | Medium acid | Strong acid |
---|---|---|---|
MgF2 | 1.00 | 0 | 1.00 |
9%SP-MgF2 | 5.53 | 3.23 | 2.30 |
14%SP-MgF2 | 8.67 | 4.38 | 4.29 |
20%SP-MgF2 | 5.58 | 3.32 | 2.26 |
50%SP-MgF2 | 3.41 | 2.30 | 1.11 |
Samples | SCMg/% | UCMg/% | SCF/% | UCF/% |
---|---|---|---|---|
MgF2 | 81.5 | 18.5 | 79.3 | 20.7 |
9%SP-MgF2 | 53.1 | 46.9 | 51.1 | 48.9 |
14%SP-MgF2 | 30.6 | 69.4 | 31.9 | 68.1 |
20%SP-MgF2 | 55.5 | 44.5 | 56.5 | 43.5 |
50%SP-MgF2 | 66.6 | 33.4 | 69.6 | 30.4 |
表3 x%SP-MgF2的饱和Mg和F含量以及配位Mg和F含量
Table 3 Content of saturated-coordination Mg (SCMg), F(SCF) and under-coordinated Mg (UCMg) and F(UCF) of x%SP-MgF2
Samples | SCMg/% | UCMg/% | SCF/% | UCF/% |
---|---|---|---|---|
MgF2 | 81.5 | 18.5 | 79.3 | 20.7 |
9%SP-MgF2 | 53.1 | 46.9 | 51.1 | 48.9 |
14%SP-MgF2 | 30.6 | 69.4 | 31.9 | 68.1 |
20%SP-MgF2 | 55.5 | 44.5 | 56.5 | 43.5 |
50%SP-MgF2 | 66.6 | 33.4 | 69.6 | 30.4 |
[1] | KEMNITZ E, WUTTKE S, COMAN S M.Tailor-made MgF2-based catalysts by Sol-Gel synthesis.European Journal of Inorganic Chemistry, 2011, 2011(31): 4773-4794. |
[2] | SKAPIN T,TAVČAR G, BENČAN A, et al.Recent developments in the preparation of high surface area metal fluorides.Journal of Fluorine Chemistry, 2009, 130(12): 1086-1092. |
[3] | GROHMANN I, HESS A, KEMNITZ E, et al.XANES investigations and catalytic properties of coprecipitated AlF3/MgF2 phases.Journal of Materials Chemistry, 1998, 8(6): 1453-1457. |
[4] | TRENQUE I, MORNET S, DUGUET E, et al.Encapsulation of ZnO particles by metal fluorides: towards an application as transparent insulating coatings for windows.Optical Materials, 2013, 35(3): 661-667. |
[5] | PIETROWSKI M, ZIELIŃSKI M, WOJCIECHOWSKA M. Nanocolloidal Ru/MgF2 catalyst for hydrogenation of chloronitrobenzene and toluene.Polish Journal of Chemical Technology, 2014, 16(2): 63-68. |
[6] | LIN JIN-TAI, PANG SHU-TING, WANG QIAN-MING.Ultrasonic- assisted microwave synthesis of luminescent V2O5/MgF2:Eu3+ and its catalytic properties.Materials Letters, 2013, 98(5): 12-14. |
[7] | NANDIYANTO A B D, OGI T, OKUYAMA K. Doughnut magnesium fluoride nanoparticles prepared by an electron-beam irradiation method.Journal of Nanoparticle Research, 2012, 14(10): 1182-1191. |
[8] | NANDIYANTO A B D, ISKANDAR F, OGI T, et al. Nanometer to submicrometer magnesium fluoride particles with controllable morphology.Langmuir, 2010, 26(14): 12260-12266. |
[9] | TRONCEA S B, WUTTKE S, KEMNITZ E, et al.Hydroxylated magnesium fluorides as environmentally friendly catalysts for glycerol acetylation.Applied Catalysis B: Environmental, 2011, 107(3/4): 260-267. |
[10] | WUTTKE S, VIMONT A, LAVALLEY J, et al.Infrared investigation of the acid and basic properties of a Sol-Gel prepared MgF2.The Journal of Physical Chemistry C, 2010, 114(11): 5113-5120. |
[11] | SABERI A, NEGAHDARI Z, BOUAZZA S, et al.Synthesis and characterization of crystalline nanosized MgF2 powder via microemulsion route.Journal of Fluorine Chemistry, 2010, 131(12): 1353-1355. |
[12] | NOACK J, SCHEURELL K, KEMNITZ E, et al.MgF2 antireflective coatings by Sol-Gel processing: film preparation and thermal densification.Journal of Materials Chemistry, 2012, 22(35): 18535-18541. |
[13] | AGIRREZABAL-TELLERIA I, HEMMANN F, JÄGER C, et al.Functionalized partially hydroxylated MgF2 as catalysts for the dehydration of d-xylose to furfural.Journal of Catalysis, 2013, 305(9): 81-91. |
[14] | NOACK J, FRITZ C, FLÜGEL C, et al. Metal fluoride-based transparent nanocomposites with low refractive indices.Dalton Trans, 2013, 42(16): 5706-5710. |
[15] | AGIRREZABAL-TELLERIA I, GUO Y, HEMMANN F, et al.Dehydration of xylose and glucose to furan derivatives using bifunctional partially hydroxylated MgF2 catalysts and N2-stripping.Catalysis Science & Technology, 2014, 4(5): 1357-1368. |
[16] | TEINZ K, WUTTKE S, BÖRNO F, et al. Highly selective metal fluoride catalysts for the dehydrohalogenation of 3-chloro-1,1,1,3- tetrafluorobutane.Journal of Catalysis, 2011, 282(1): 175-182. |
[17] | ZHENG XIAO-LI, LV YIN-YUN, KUANG QIN, et al.Close- packed colloidal SiO2 as a nanoreactor: generalized synthesis of metal oxide mesoporous single crystals and mesocrystals.Chemistry of Materials, 2014, 26(19): 5700-5709. |
[18] | NANDIYANTO A B D, OGI T, OKUYAMA K. Control of the shell structural properties and cavity diameter of hollow magnesium fluoride particles.ACS Applied Materials & Interfaces, 2014, 6(6): 4418-4427. |
[19] | KUSIOR A, WARCHAL A, KOMORNICKI S, et al.Hard- template synthesis of titanium dioxide hollow spheres.Micro & Nano Letters, 2014, 9(10): 721-725. |
[20] | ROGGENBUCK J, TIEMANN M.Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon.Journal of the American Chemical Society, 2005, 127(4): 1096-1097. |
[21] | CHEN MIAO, JIN JIA-MIN, LIN SHENG-DA, et al.SiO2- template synthesis of mesoporous MgF2 highly effective for Cl/F exchange reaction.Journal of Fluorine Chemistry, 2013, 150(6): 46-52. |
[22] | VERDIER S, VAN DER LAAK N, DELALANDE S, et al. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS.Applied Surface Science, 2004, 235(4): 513-524. |
[23] | BÖSE O, KEMNITZ E, LIPPITZ A, et al. XPS analysis of β-AlF3 phases with Al successively substituted by Mg to be used for heterogeneously catalyzed Cl/F exchange reactions.Applied Surface Science, 1997, 120(3): 181-190. |
[24] | HAN WEN-FENG, ZHANG CHU-NPENG, WANG HAI-LI, et al.Sub-nano MgF2 embedded in carbon nanofibers and electrospun MgF2 nanofibers by one-step electrospinning as highly efficient catalysts for 1,1,1-trifluoroethane dehydrofluorination.Catalysis Science & Technology, 2017, 7(24): 6000-6012. |
[25] | NIU HUAI-CHENG, LI LI-CHUN, LI YING, et al.Effect of Cr-doping on the acidity and pore structure of mesoporous magnesium fluoride.Chinese Journal of Catalysis, 2013, 34(2): 373-378. |
[1] | 田俊亭, 李晓兵, 丁伟艳, 聂生东, 梁柱. 软模板法制备高频超声换能器用1-3复合压电材料[J]. 无机材料学报, 2022, 37(5): 507-512. |
[2] | 张文君, 赵雪莹, 吕江维, 曲有鹏. 中空有序介孔有机硅的研究进展: 制备及在肿瘤治疗中的应用[J]. 无机材料学报, 2022, 37(11): 1192-1202. |
[3] | 汤嘉伟, 王永邦, 马成, 杨海潇, 王际童, 乔文明, 凌立成. 甲基萘沥青基有序中孔炭的制备及电化学性能[J]. 无机材料学报, 2021, 36(10): 1031-1038. |
[4] | 许云青,王海增. EDTA辅助水热法制备不同形貌的氟化镁钠[J]. 无机材料学报, 2019, 34(9): 933-937. |
[5] | 魏磊, 马麦霞, 卢艳红, 王东升, 张素玲, 赵娣, 马卫攀. 酵母菌模板辅助合成Co3O4空心微球催化NaBH4水解制氢[J]. 无机材料学报, 2018, 33(6): 648-652. |
[6] | 王军霞, 赵建伟, 秦丽溶, 赵秉林, 蒋正艳. 镍掺杂四氧化三钴纳米线阵列的制备及其超级电容特性[J]. 无机材料学报, 2018, 33(5): 501-506. |
[7] | 陈孟秋, 陈云, 舒杼, 王钰, 邬红娟, 郭利民. 埃洛石原料无模板法制备高比表面积介孔氧化硅及其在亚甲基蓝吸附中的应用[J]. 无机材料学报, 2018, 33(12): 1365-1370. |
[8] | 邹俭鹏, 杨洪志, 肖 平, 潘一峰. 微纳分级结构碳酸钙中空微球的可控制备[J]. 无机材料学报, 2016, 31(7): 711-718. |
[9] | 宋 博, 赵丽丽, 陈笑迎, 游丽君, 宋力昕. 氟化镁基底上HfO2中间层对Al2O3薄膜微观组织和力学性能的影响[J]. 无机材料学报, 2016, 31(7): 779-784. |
[10] | 鲍 艳, 王 彤. 中空SiO2微球的制备及其在缓/控释应用中的新进展[J]. 无机材料学报, 2016, 31(12): 1269-1278. |
[11] | 吁 霁, 夏 媛. 牺牲棉纤维模板法制备褶皱状SnO2负极材料及其电化学性能[J]. 无机材料学报, 2014, 29(11): 1127-1132. |
[12] | 鲍 艳, 杨永强, 马建中. 模板法制备中空结构材料的研究进展[J]. 无机材料学报, 2013, 28(5): 459-468. |
[13] | 邓 元, 李 娜, 王 瑶, 杨 萌. Te纳米线模板法加工Bi2Te3-Te片式棒热电材料[J]. 无机材料学报, 2010, 25(6): 664-668. |
[14] | 段 祥,王德平,姚爱华,周丽赟,夏朝晖,黄文旵. 胶晶模板法制备三维有序多孔羟基磷灰石[J]. 无机材料学报, 2009, 24(1): 161-165. |
[15] | 付新建,王宁霞,张圣祖,王 宏,杨亚江. 超分子水凝胶模板法制备项链状TiO2纳米颗粒[J]. 无机材料学报, 2008, 23(2): 393-397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||