[1] |
WANG G H. Development of anti- reflection film for LCD. Image Technology, 2008, 1: 14-16.
|
[2] |
WALSH G. Automobile windscreen rake, spectacle lenses, and effective transmittance. Optometry and Vision Science, 2009, 86(12): 1376-1379.
|
[3] |
CHEN D G. Anti-reflection (AR) coatings made by Sol-Gel processes: a review. Solar Energy Materials and Solar Cells, 2001, 68(3/4): 313-336.
|
[4] |
NUBILE P. Analytical design of antireflection coatings for silicon photovoltaic devices. Thin Solid Films, 1999, 342(1/2): 257-261.
|
[5] |
WANG S D, HUANG F H. Antireflection coatings formed from polyelectrolyte multilayers on PMMA substrate. Surface Engineering, 2011, 27(4): 279-285.
|
[6] |
ZHANG J C, XIONG L M, FANG M, et al. Wide-angle and broadband graded-refractive-index antireflection coatings. Chinese Physics B, 2013, 22(4): 044201.
|
[7] |
IBN-ELHAJ M, SCHADT M. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature, 2001, 410(6830): 796-799.
|
[8] |
CHU J Y, CHIUEH M H, CHEN C T, et al. 17.2% efficiency multicrystalline solar cells by optimizing structure of the MgF2/SiNx double antireflection layer. Journal of Photonics for Energy, 2011, 1(1): 1-9.
|
[9] |
KORKMAZ S, ELMAS S, EKEM N, et al. Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA). Optics Communications, 2012, 285(9): 2373-2376
|
[10] |
PERALES F, HERRERO J M, JAQUE D, et al. Improvement of MgF2 thin coating films for laser applications. Optical Materials, 2007, 29(7): 783-787.
|
[11] |
WALHEIM S, SCHAFFER E, MLYNEK J, et al. Nanophase- separated polymer films as high-performance antireflection coatings. Science, 1999, 283(5401): 520-522.
|
[12] |
SUN Z J, LUO Y W. Fabrication of non-collapsed hollow polymeric nanoparticles with shell thickness in the order of ten nanometres and anti-reflection coatings. Soft Matter, 2011, 7(3): 871-875.
|
[13] |
DU Y, LUNA L E, TAN W S, et al. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates. Acsnano, 2010, 4(7): 4308-4316.
|
[14] |
ZHANG L B, LI Y, SUN J Q, et al. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infra-red region. Journal of Colloid and Interface Science, 2008, 319(1): 302-308.
|
[15] |
KOO H Y, YI D K, YOO S J, et al. A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004, 16(3): 274-277.
|
[16] |
LIU X M, DU X, HE J H. Hierarchically structured porous films of silica hollow spheres via layer-by-layer assembly and their superhydrophilic and antifogging properties. ChemPhysChem, 2008, 9(2): 305-309.
|
[17] |
XU L G, HE J H. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir, 2012, 28(19): 7512-7518.
|
[18] |
WU S H, MOU C Y, LIN H P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862-3875.
|
[19] |
WAN Y, YU S H. Polyelectrolyte controlled large-scale synthesis of hollow silica spheres with tunable sizes and wall thicknesses. The Journal of Physical Chemistry C, 2008, 112(10): 3641-3647.
|
[20] |
CHEN M, WU L M, ZHOU S X, et al. A method for the fabrication of monodisperse hollow silica spheres. Advanced Materials, 2006, 18(6): 801-806.
|
[21] |
LEE D, OMOLADE D, COHEN R E, et al. pH-dependent structure and properties of TiO2/SiO2 nanoparticle multilayer thin films. Chemistry of Materials, 2007, 19(6): 1427-1433.
|
[22] |
PARK M S, KIM J K. Broad-band antireflection coating at near-infrared wavelengths by a breath figure. Langmuir, 2005, 21(24): 11404-11408.
|