[1] Rowe D M (ed.) CRC Handbook of Thermoelectrics. CRC, Boca Raton, FL, 1995: 407–440. [2] Nolas G S, Sharp J, Goldsmid H J. Thermoelectrics: Basic Principles and New Materials Developments. Springer, 2001.[3] Sales B C, Mandrus D, Williams R. Filled skutterudite antimonides: a new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328.[4] [Sales B C, Mandrus D, Chakoumakos B C, et al. Filled skutterudite antimonides: Electron crystals and phonon glasses. Physical Review B, 1997, 56(23): 15081–15089.[5] Pei Y Z, Chen L D, Zhang W, et al. Synthesis and thermoelectric properties of KyCo4Sb12. Applied Physics Letters, 2006, 89(22): 221107–1–3.[6] Chen L D, Kawahara T, Tang X. F, et al. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. Journal of Applied Physics, 2001, 90(4): 1864–1868.[7] Nolas G S, Kaeser M, Littleton R T, et al. High figure of merit in partially filled ytterbium skutterudite materials. Applied Physics Letters, 2000, 77(12): 1855–1857.[8] Zhao X Y, Shi X, Chen L D, et al. Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Applied Physics Letters, 2006, 89(9): 0921211–1–3.[9] Li H, Tang X F, Su X L, et al. Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance. Applied Physics Letters, 2008, 92(20): 202114-1-3.[10] Li H, Tang X F, Zhang Q J, et al. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Applied Physics Letters, 2009, 94(10): 102114–1–3.[11] Xiong Z, Chen X, Huang X, et al. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Materialia, 2010, 58(11): 3995–4002.[12] Zhao Degang, Tang Shouqiu, Liu Yunteng, et al. High temperature oxidation behavior of cobalt triantimonide thermoelectric material. Journal of Alloys and Compounds, 2010, 504: 552–558.[13] Godlewska E, Zawadzka K, Adamczyk A, et al. Degradation of CoSb3 in air at elevated temperatures. Oxidation of Metals, 2010, 74: 113–124.[14] 高 敏, 张景韶.温差电转换及其应用. 北京: 兵器工业出版社, 1996.[15] Chen L, Xiong Z, Bai S Q. Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials, 2010, 25(6): 561–568.[16] Wan Junxia, Zhao Xueying, Li Xiaoya, et al. Effects of annealing time on thermoelectric properties of Eu-filled skutterudite compounds. Journal of the Chinese Silicate Society, 2009, 37(3): 363–366.[17] Wei P, Zhao W Y, Dong C L, et al. Thermal stability of barium and indium double-filled skutterudite Ba0.3In0.2Co3.95Ni0.05Sb12 coated by SiO2 nanoparticles. Journal of Electronic Materials, 2010, 39(9): 1803–1808.[18] Ding J, Gu H, Qiu P, et al. The creation of Yb2O3 nano-precipitates in Yb-filled skutterudite structure by controlled inner oxidation. Journal of Electronic Materials, 2013, 42(3): 382–388.[19] Leszczynski Juliusz, Wojciechowski Krzysztof T, Malecki Andrzej Leslaw. Studies on thermal decomposition and oxidation of CoSb3. Journal of Thermal Analysis and Calorimetry, 2011, 105(1): 211–222.[20] Wei P, Zhao W Y. Excellent performance stability of Ba and In double-filled skutterudite thermoelectric materials, Acta Materialia, 2011, 59: 3244–3254.[21] Zhao W Y, Wei P, Zhang Q J, et al. Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler, Journal of the American Chemical Society, 2009, 131(10): 3713–3720. |