[1] Rintoul L, Wentrup-Byrne E, Suzuki S, et al. FT-IR spectroscopy of -uoro-substituted hydroxyapatite:strengths and limitations. J. Mater. Sci. Mater. Med., 2007, 18(9): 1701-1709.[2] Eslami H, Solati-Hashjin M, Tahriri M. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater. Sci. Eng. C, 2009, 29(4): 1387-1398.[3] Boivin G, Meunier P J. The Metabollic and Molecular Basis of Acquired Disease. London:Bailliere Tindall, 1990.[4] Sogo Y, Ito A, Yokoyama D, et al. Synthesis of -uoride-releasing carbonate apatites for bone substitutes. J. Mater. Sci. Mater. Med., 2007, 18(6): 1001-1007.[5] Joost M, Thorsen A. A comparison of some effects of fluoride on apatite formation in vitro and in vivo. Cal. Tissue Int., 1984, 36(1): 690-696.[6] Wang Y, Zhang S, Zeng X, et al. Osteroblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomater., 2007, 3(2): 191-197.[7] Zhou H M, Zeng L, Yi D Q, et al. Research on the preparation and bioactivity of FHA coatings. Chinesd J. Mater. Res., 2010, 24(6): 643-648. [8] Qu H, Vasiliev A L, Aindow M, et al. Incorporation of -uorine ions into hydroxyapatite by a pH cycling method. J. Mater. Sci.:Mater. Med., 2005, 16(5): 447-453.[9] Chen Y M, Miao X G. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials, 2005, 26(11): 1205-1210.[10] Cheng K, Weng W J, Wang H M, et al: In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials, 2005, 26(32): 6288-6295.[11] Wang F, Zhang L. Influence of fluorine content on crystal structure of nano-fluorhydroxyapatite powders. Mater. Res. Technol., 2008, 16(4): 559-561.[12] Zeng L, Zhou H M, Yi D Q, et al. Thermophysical properties and bioacvtivity research of FHA. Funct. Mater., 2010, 41(1): 100-104.[13] Jha L J, Best S M, Knowles J C, et al. Preparation and characterization of -uoride-substituted apatites. J. Mater. Sci.:Mater. Med., 1997, 8(4): 185-189.[14] Zhang K C, Zhang L H. The science and technology of crystal growth, 2nd ed. Beijing: Science Press, 1997.[15] Zhu Q X, Wu J Q. Effective factors of preparation for carbonated hydroxyapatiteby the aqueous precipitation method. J. Chin. Ceram. Soc., 2007, 35(6): 690-695.[16] McdowelL H, Gregory T M, Brown W E. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37℃. J. Res. Natl. Bur. Stand., 1977, 81(3): 273-281. [17] Kumar R, Prakash K H, Cheang P, et al. Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir, 2004, 20(5): 196-200.[18] Zhao Z X, Weng W J, Qu H B, et al. Sol-Gel derived fluorapatite hydroxyapatite films and their solubility. J. Mater. Sci. Eng., 2005, 23(2): 226-229.[19] Liu Y, Xu H Y. The effects of structural channel inos of apatite on their lattice parameters. J. Mineral. Petrol., 2001, 21(1): 1-4.[20] Zeng L. The Preparation and Bioactivity Research of FHA and BG/BG-FHA Composite Coating. Changsha: Central South University, Master Thesis, 2010.[21] Weng S F. Fourier Transform Infrared Spectrometer, 2nd ed. Beijing: Chemical Industry Press, 2005.[22] Zhu Q X, Wu J Q, Xu Q Q. Study on the tructure and thermal stability of hydroxyfluorapatite. Bull. Chin. Ceram. Soc., 2008, 27(6): 1119-1123.[23] Penel G, Leroy G, Rey C. Infrared and Raman microspectrometry study of fluor-hydroxy and hydroxyapatite. J. Mater. Sci.:Mater. Med., 1997, 8(5): 271-276.[24] Xu T, Liu Y. FTIR research on channel ion of fluoride hydroxyapatite. Light Scattering, 2007, 19(1): 86-90.[25] Chou X J, Huang M H, Zi W H, et al. The synthesis of hydroxyapatite bioceramic material by aqueous method. Chin. Ceram., 2004, 40(1): 20-23.[26] Huang Z L, Wang D W, Liu Y, et al. The methods and the present progress in preparation of hydroxyapatite (HAP). J. Wuhan Inst. Chem. Tech., 2001, 23(3): 49-53. |